Herten, Markus; Niederleithinger, Ernst; Baeßler, Matthias; Tronicke, Jens; Rumpf, Michael

Geotechnical and geophysical characterisation of a pile test site in post-glacial soil

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/105990

Vorgeschlagene Zitierweise/Suggested citation:
Herten, Markus; Niederleithinger, Ernst; Baeßler, Matthias; Tronicke, Jens; Rumpf, Michael (2013): Geotechnical and geophysical characterisation of a pile test site in post-glacial soil. Poster präsentiert bei: 26th Symposium on the Application of Geophysics to Engineering & Environmental Problems.

Standardnutzungsbedingungen/Terms of Use:
Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of the restrictive license will be binding.
BAW and BAM have evaluated dynamic pile load testing methods on bored piles in a sandy, post-glacial environment. A test site had to be prepared, which ensures comparable conditions at all pile locations as well as a detailed knowledge on soil parameters and other boundary conditions. A detailed site investigation program was performed at a dedicated area on the BAM test site near Horstwalde south of Berlin, Germany. Boreholes have been drilled to gather undisturbed samples for lab analysis. In addition several CPT soundings have been performed as well as a geophysical survey. The site consists mainly of well graded, partly well compacted medium sands. But at depth an inhomogeneous gravel layer was detected in some parts of the site. This has led to a redesign of the test piles. They are now shorter and slimmer than originally intended to avoid the gravels at depth and to ensure that the drop weight available for dynamic test is capable to mobilize the required loads.

The boreholes look almost homogeneous – but detailed investigation showed something else! Pile design was revised to avoid highly inhomogeneous lower sands!

Pile Load Tests

Dynamic load test

Mission accomplished!
Further information on the pile tests:
Niederleithinger et al., 2012, IS Kanzawa.
Herten et al., 2013: Pfahl symposium (in German).

Geophysics

To complement the geotechnical results geophysical measurements have been performed between the boreholes:
- p-wave/s-wave seismic tomography
- GPR tomography (not shown)

Data have been evaluated as traditional cross-hole plots and joint tomographic inversions. General structure and inhomogeneities as in CPTs!

Contact: Ernst.Niederleithinger@bam.de. For manuscript see: Niederleithinger et al. 2012, in: Geotechnical and Geophysical Site Characterization 4, CRC Press.