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Abstract

Upstream directed �sh migration in the German federal waterway system

is blocked by many dams. Building e�cient �shways is a way to mit igate

this ecological problem, but to determine e�ciency using �eld or lab oratory

studies is costly and time-consuming. A numerical model simulating �sh

movement in spatial and temporal scales of decimeters and seconds, respec-

tively, can support selection of competing �shway designs and contribute to

scienti�c understanding of their performance.

The Eulerian-Lagrangian-agent method (ELAM) was chosen to develop

a new individual-based model, �ELAM-de�. 3D computational �uid dynam-

ics input on arbitrary polyhedral meshes was obtained from the open source

toolbox OpenFOAM ®. Six behavior patterns were derived from movement

data of live brown trout under two di�erent �ow �elds collected in a large

�ume (length � width � water depth was11:78 m� 2:50 m� 0:60 m). The be-

havior patterns were used to develop, calibrate, and validate the individual-

based model.

For the �rst �ow �eld, containing a high-velocity jet, calibrated m odel

predictions minus observed data were within� 18:3 percentage points or less

for all six patterns. Validation in the second, more homogeneous �ow �eld

obtained qualitative agreement for �ve patterns using identical model pa-

rameters. Advective acceleration magnitude and hydrostatic pressure were

identi�ed as key hydraulic stimuli to reproduce observed behavior. Acclima-

tization through simple memory functions was incorporated as a critical

process for the individual-based model. ELAM-de produces estimates for

�ume passage success and metabolic cost, which � after successful further

validation � can be used to compare e�ciencies of alternative �shway designs.
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Kurzfassung

Die aufwärtsgerichtete Fischwanderung in den deutschen Bundeswasserstra-
ÿen wird durch viele Stauanlagen behindert. Der Bau von e�zienten Fischauf-
stiegsanlagen kann dieses ökologische Problem verringern. E�zienz im Feld
oder im Labor zu bestimmen, ist jedoch kostspielig und langwierig. Ein nu-
merisches Modell, das Fischverhalten auf räumlichen und zeitlichen Ska-
len von Dezimetern beziehungsweise Sekunden simuliert, kann Planungsent-
scheidungen unterstützen und das wissenschaftliche Verständnis der Auswir-
kungen verschiedener Bauweisen fördern.

Die �Eulerian-Lagrangian-agent�-Methode (ELAM) wurde für die Ent-
wicklung eines neuen individuenbasierten Modells (�ELAM-de�) herange-
zogen. Das Modell wurde mit 3D-Strömungsdaten gespeist, die mit der
quello�enen Softwarebibliothek OpenFOAM ® auf Netzen aus beliebigen Po-
lyedern berechnet wurden. Sechs Verhaltensmuster wurden abgeleitet aus
Bewegungsdaten von lebenden Bachforellen in zwei unterschiedlichen Strö-
mungsfeldern in einer groÿen Laborrinne (Länge� Breite � Wassertiefe
11;78 m � 2;50 m � 0;60 m). Mittels der Verhaltensmuster wurde das indi-
viduenbasierte Modell erstellt, kalibriert und validiert.

Im ersten Strömungsfeld, das einen Jet mit erhöhter Geschwindigkeit ent-
hielt, betrug die Di�erenz zwischen kalibriertem Modellergebnis und Beob-
achtung bei allen sechs Mustern maximal� 18;3 Prozentpunkte. Die Validie-
rung im zweiten, homogeneren Strömungsfeld ergab mit denselben Modell-
parametern eine qualitative Übereinstimmung bei fünf Mustern. Der Betrag
der advektiven Beschleunigung und der hydrostatische Druck waren entschei-
dende hydraulische Stimuli für die Wiedergabe des beobachteten Verhal-
tens. Auch Akklimatisierung mit Hilfe einfacher Gedächtnisfunktionen war
ein wichtiger Bestandteil des individuenbasierten Modells. ELAM-de liefert
Schätzwerte für Passageraten und metabolische Kosten in einer Rinne, die
� nach erfolgreicher weiterer Validierung � verwendet werden können, um die
E�zienz verschiedener Bau- und Betriebsweisen von Fischaufstiegsanlagen
zu vergleichen.
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Chapter 1

Introduction

1.1 Fish migration in German rivers

In Germany, �sh migration is often associated with the picture of jump ing

salmon. This picture is however very unlikely to be observed because salmon

and other migrating species are rare in German rivers. What are the causes

of this rarity � and how can it be changed? To approach this question, a

de�nition of �sh migration and a look in its history are helpful.

Fish migration can be classi�ed as part of �sh movement in general. Fish

movement is any change in location, including passive drift. Fish migration

typically is periodic, takes place on a population-level, and includes a habitat

or environment change (Koehn and Crook 2013). It is well known that salmon

migrate between the sea and fresh water (diadromous species). However,

migration is also important to species which stay in fresh water during their

lifetime ( potamodromousspecies). Lucas and Baras (2001, p. 5) de�ne three

principal functional categories of �sh migration: Reproduction, feeding, and

refuge. Di�erent sea and river reaches ful�ll these needs. For example in

natural freshwaters, many �sh species use shallow and slow streaming zones

for mating, spawning and growing. Faster �owing and more open zones may

provide �oating food and hunting opportunities, whereas deep scours may

provide refuge from predators, low or high temperatures, and �oods. But

free migration is restricted.

German rivers have been impounded for centuries for energy production,

navigation, and �ood control. Small streams were intensively blocked for

watermills starting in the middle ages, which had large consequenceson
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Figure 1.1: Historic allis shad landings in the Netherlands illustrate the sharp
decline from an important food �sh to insigni�cance (Groot 1990, p. 253).

�sh populations (Lenders et al. 2016). Destruction of spawning habitats,

over�shing, and water pollution led to further declines in �sh popu lations,

despite extensive stocking of salmon in the Rhine river (Borne 1881).Massive

blocking of �sh migration in the Rhine river system started in the l ate 1800s,

when large concrete dams1 were build in the tributaries Main (from 1883;

Wikipedia 2017), Neckar (from 1924; Koch 1929), and Moselle (1942�1964;

Landwüst 2004). This further fueled the downfall: Allis shad disappeared in

1910 (Figure 1.1) and salmon in the 1950s (ICPR 2004).

Fishways were provided on most dams of Main, Neckar, and Moselle to

enable continuous upstream migration. However, they often were too steep,

placed too far away from natural migration routes, and were not su�cientl y

maintained to work e�ectively (see BfG 2010). Downstream migration routes

usually follow the bulk river �ow through turbines and over spillw ays, where

�sh can take damage, but e�orts for protection were lacking. Through chang-

ing public awareness for the environment, fueled by the Endosulfan and

Sandoz disasters in 1969 and 1986 respectively, legislation changed from the

1970s on and led to dramatic reduction in river pollution (Lelek and Buhse

1992; DLF Kultur 2008). Rivers habitats were gradually restored. Adoption

of the European Water Framework Directive (WFD) by the European Par-

liament in the year 2000 initiated the construction of new �shways. Today,

ongoing counts in modern �shways and �sh monitoring programs demon-

1The American term dam is used generally, in contrast to the German Damm, which
by de�nition is made of soil. If a dam is made of concrete, it is best translated asStaumauer
or Stauanlage, depending on the context.
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strate that a variety of species is present (again), but total abundance and

relative composition do not match the original natural state (e.g., WFBW

2017; BfG 2017).

To meet the goals of the WFD, hundreds of new �shways have to be

constructed on the German federal waterways (Heinzelmann et al. 2013).

Their biological and economical e�ciencies for more than 60 domestic species

have to be considered, while traits like swim capability as well as migration,

schooling, and feeding behavior vary largely between species. For evaluation

and comparison of �shway design, plain counts are obviously insu�cient,

as they are subject to diverse uncontrolled e�ects. De�ning a meaningful

metric and measuring the necessary data for �shway biological e�ciency is

a complex task (Cooke and Hinch 2013). Field studies to gain the necessary

data are hampered by natural variability of �sh stocks and environmental

factors. Example challenges are to �nd the number of �sh intending to move

upstream or to quantify metabolic cost of passage. Laboratory investigations

are restricted in dimensions and in�uenced by arti�cial surroundi ngs. In

addition, both approaches are costly and time-consuming.

A new opportunity to evaluate e�ciency is provided by numerical si mula-

tion methods for hydraulics and �sh behavior. Numerical methods represent

a high degree of precision, combined with �exibility and speed. Thepresent

work deals with individual-based models (IBMs) based on the Eulerian-

Lagrangian-agent method (ELAM). This method is especially suitable for

comparing competing construction designs.

1.2 Individual-based modeling and the ELAM

Individual-based modeling1 is a young discipline of ecology which developed

over the recent decades. A basic idea of IBM is to let reproducible patterns

emergefrom individual behavior of populations of living entities, steered by

programmable rules.

ˆ Patterns can be de�ned as any sign of order above random variation

(Grimm and Railsback 2005, p. 38). They occur at various levels from

system to individual, and at various time scales. This makes them

especially valuable for modeling, as diverse information is integrated

1also: agent-based modeling (ABM)
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by pattern-oriented analysis. The quality of di�erent models can be

measured by their ability to reproduce patterns observed in nature or

laboratory.

ˆ Emergence is the process of creating unexpected behavior through in-

teraction of system components (Camazine et al. 2003, p. 8). It is

opposed to direct implementation (imposing) of behavior or behavior

patterns. System components can be individual traits and experience.

Traits are algorithms which specify a certain behavior of an individual.

Adaptive traits involve a reaction to environmental stimuli or inter nal

states (Grimm and Railsback 2005, p. 74).

The IBM approach facilitates understanding of underlying processes and

supports both a wide application range and portability of models. A funda-

mental goal of IBM is to identify �tness-seeking traits on the indivi dual level.

If met, the model is well-suited for predictions under changing environmental

conditions, because traits are more general and reliable than commonly used

empirical relationships (Stillman et al. 2015). IBM applications are computer

programs and have been increasing in spatial and temporal resolutions as

computers have continued to get more powerful.

The Eulerian-Lagrangian-agent method (ELAM) is a general concept

developed to create IBMs of the movement of �sh in multidimensional �ow

�elds. The term �ELAM� was coined by Goodwin et al. (2006). As it re-

�ects the approach of most recent �sh IBMs (often unmentioned, however),

I decided to use the ELAM for model development and for structuring this

work.

As illustrated in Figure 1.2, the ELAM combines computational �uid

dynamics (CFD) model output in Eulerian description and individu al move-

ment and transport in Lagrangian description by means of anagent. An

agent is the mathematical representation of an individual, e.g. a �sh. The

Eulerian1 reference frame uses a (virtual) control volume, which is static in

space, to describe passing �ow in time (�watching a river from the bank�).

The Lagrangian2 reference frame uses a (virtual) moving parcel to describe

�ow in time and space (�drifting down a river�).

The variety of interacting model components can cause confusion. To

1named after Swiss mathematician Leonard Euler
2named after Italian-French mathematician Joseph-Louis Lagrange
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Figure 1.2: An ELAM model combines Eulerian, Lagrangian, and Agent compo-
nents. Sub�gure (a) illustrates model information attributed to th e components.
Sub�gure (b) shows the implementation of the components in general andin this
particular work (right hand side annotations). Model information �ows be tween the
software components as follows: Hydraulic data is available from the computational
�uid dynamics (CFD) model in Eulerian reference frame (on a mesh). The behavior
model (agent) uses interpolated hydraulic data along with stored statevariables
to compute speed and direction for an individual. Then, the software framework
moves the individual in time and space and tracks its state variables along the path
in Lagrangian reference frame. This procedure is repeated every timestep.
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structure this work it is useful to di�erentiate between framework and be-

havior model.

ˆ The software framework can be reused in very di�erent IBMs and

provides reusable functions such as data storage, input/output, vec-

tor arithmetic, etc. SWARM (swarm.org 2017) and NetLogo (Wilenski

2017) are examples for pure frameworks.

ˆ The behavior model consists of a unique set of behavior rules and pa-

rameters and produces an output reaction from given input. In context

of the ELAM, it forms the agent component.

As IBMs are very di�erent, these de�nitions are not generally true. Al so, the

term �IBM� can be used either just for the behavior model, be expanded to

include the framework, or be further expanded to include the model(s) used

for input, e.g. the CFD model. In this work, the latter, most comprehensive

de�nition is used, i.e. all components of an ELAM model form a single IBM.

The numerical evaluation of �shway e�ciency requires modeling of t he

in�uence of hydraulics on �sh behavior on spatial and temporal scales of

sub-meters and seconds. Existing IBMs for �sh migration at dams, which

includes forebays, tailraces, and �shways (e.g., Arenas Amado 2012; Abde-

laziz 2013; Goodwin et al. 2014; Zielinski et al. 2015; Gao et al. 2016), are not

suitable for this task, as they either operate on larger scales, deal withdown-

stream migration, arti�cially enforce upstream directed movement, and/or

do not allow trial repetition after initial failure. I will expand on th ese points

in the IBM literature review. For now it is su�cient to know that d evelop-

ment of a new behavior model was found necessary, which requires data. A

suitable, large record of behavior data was observed as part of a 2016 study

in the ethohydraulic �ume (EHF) of BAW and BfG, the Federal Waterways

Engineering and Research Institute and the Federal Institute of Hydrology,

respectively. Results of the study are being prepared for publication (Schütz

et al. 2017).

The resulting workload is structured by single objectives as follows.

1.3 Objectives

The main objective of this work is (1) to create a new IBM, �ELAM-de�, for

simulating behavior of upstream migrating �sh in small spatial and temporal

scale (sub-meters and seconds). The appendix-de is short for Deutschland
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(Germany). The investigation focuses on �shway dimensions and species

typical of the German federal waterways as they are, due to their size, crucial

for connecting �sh habitats through migration.

Further objectives necessary to reach the main objective are (2) to iden-

tify patterns in observed upstream moving trout behavior in the EHF with

respect to geometrical and hydraulic parameters; (3) to evaluate whichhy-

draulic stimuli and model structure can reproduce these patterns; and (4) to

de�ne meaningful application boundaries for the new ELAM-based IBM.

1.4 Outline

This work is divided into chapters along the requirements and components

of an ELAM model.

Chapter 1 provides information on �sh migration which motivates the

need for research and explains fundamentals of the main method ELAM.

Chapter 2 reviews and analyzes �sh behavior observations of upstream

movement in laboratory and nature scale to �nd stimuli and patterns for

behavior model development. Besides prior work, emphasis is put onpattern

analysis of trout behavior data from the EHF.

Chapter 3 develops and tests a 3D CFD model of the EHF to generate

hydraulic data for input.

Chapter 4 develops a new software framework. Recently published IBMs

are reviewed to evaluate both their software frameworks and behavior models

for suitability to small-scale �sh behavior modeling.

Chapter 5 develops a new behavior model for upstream moving trout in

a �ume. It is combined with CFD model input and the new framework fr om

chapters 3 and 4 for comprehensive calibration and validation against the

patterns observed in chapter 2 to complete the new IBM, ELAM-de.

Chapter 6 summarizes the main conclusions of this work and o�ers rec-

ommendations for future work.

The appendices contain additional materials including instructions on

running ELAM-de (appendix A), source code of custom tools (appendicesB,

C), additional model results (appendices D and E), and a comprehensive list

of the software used (appendix F).
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Chapter 2

Fish behavior observation

In this chapter, �sh behavior observations are reviewed and analyzed to �nd

stimuli and patterns for behavior model development. In the �rst p art of

the chapter, recent publications on upstream moving �sh behavior observa-

tions in laboratory and nature scale are summarized and discussed. In the

second part of the chapter, the 2016 behavior study in the ethohydraulic

�ume is introduced. Brown trout behavior data of four hydraulic set ups is

analyzed with newly developed methods to identify patterns for calibration

and validation of the new behavior model (chapter 5).

2.1 Literature review

This section aims to identify behavior traits or patterns of upstream moving

�sh in laboratory and nature scale studies which can be used for behavior

model development. Features of interest include hydraulic stimuli, swimming

close to walls, existence of resting zones, and species/body size in�uence on

swim speed.

2.1.1 Fish behavior in �umes

The review lists selected recent �ume studies of upstream moving adult

�sh interacting with inhomogeneous, directed �ow �elds and geometri cal

boundaries.

Background � The behavior of �sh in currents has been studied for

decades using laboratory �umes (example references in Adam and Lehmann

2011, p. 17�). Flumes are a basic element of hydraulic laboratories, as they
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Figure 2.1: Principal forces, ~F , acting on a �sh entraining downstream a half-
cylinder in �ow. The angle of attack is the sum of the body angle towards x axis
and the �ow angle, � . Reproduced from Przybilla et al. (2010, p. 2984).

allow controlled and detailed studies of hydraulic �ow properties. The same

advantage applies to studies of �sh behavior (review in Liao 2007), with the

downside of having a large number of possible non-natural in�uence factors

which have to be taken care of. Interestingly, �rst anecdotal tests with live

�sh at BAW were conducted as early as 1960, using a scale model (1:1.75)

of a �shway (BAW 1961).

The following references are listed in chronological order.

Przybilla et al. (2010) tested 36 rainbow trout (body length BL = 14:1�

2:1 cm) using a �ow tank. They generated a current by means of Kaplan

propellers. Additionally, they computed the �ow �eld using Open FOAM

software. The working section had dimensions ofL � W � d = 1 :0 m� 0:28 m�

0:28 m, where d is water depth. Mean �ow velocity in the tank was um =

0:42 m/s. The authors concluded that a mechanism calledentraining saves

energy for �sh swimming behind a cylinder and close to a lateral plate.

Entraining means station holding with reduced body activity (i.e. , energy

need) using �ow features. The authors supposed that �sh add a lift force to

the drag force experienced by tilting their bodies to the �ow. Then, �sh would

cancel these forces by a suction force induced through increased �owvelocity

(and decreased pressure) between �sh and a cylinder or wall (Figure2.1). In

another test, six trout spent over 70 % of observation time entraining close

to a plate, which acted as a side wall.

Wang et al. (2010) described a series of tests with 20�30 juvenile brown

BAW Dissertationen Nr. 1 2018 9
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Figure 2.2: Fish stay zones in test pool, �ow from left to right (Cornu et al. 2012).

trout each swimming in a model vertical slot �shway of �ve pools ( L � W � d =

0:75 m� 0:675 m� 0:55 m), with variable W . BL ranged between 8�12 cm.

The authors identi�ed three preferred zones in the pool, two of them lateral

to the jet downstream of the slot, avoiding high velocities. A frequency of

80 % for these two zones was stated, however, no information on its data

base and computation was given. The use of juvenile �sh to account for

model scale is not uncommon (see references in Wang et al. 2010), but the

conclusions are surely limited if adult specimen were not tested (Adam and

Lehmann 2011, p. 40).

Cornu et al. (2012) showed that chubs in the model �shway used by

Wang et al. (2010), W = 0 :5 m, preferred certain locations. The 60 �sh used

were small with a BL = 9.7�15.9 cm. Over 90 % of the detected movements

through the slots of the experimental pool started or ended in an area on

the right side downstream of the slot (Zone 1, Figure 2.2).

Goettel et al. (2015) tested 49 wild dace (BL = 6 :5 � 0:6 cm) using

3 �ow rates and 4 geometric con�gurations (brick walls) in a �ume ( L �

W � d = 8 :0 m � 0:5 m � 0:08 m). Shallow water was used to enforce two-

dimensional behavior. Flow velocity range wasU = 0 :072 m=s� 0:119 m=s.

Fish were reused in multiple tests. About60 %of released �sh provided use-

ful tracks. The dace's snout positions were obtained manually by screening

video footage from above the test pool, which had a 1�cm�grid painted on

its bottom. They were recorded after �signi�cant changes in swimming direc-

tion� and at holding positions. Qualitative observations showed preference

for vertical surfaces (walls), shading, brick edges, and group swimming. Anal-
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ysis of the turbulence levels at chosen directions (by both means of TKE,

turbulence kinetic energy, and� , Reynolds stress) showed a clear preference

for maintaining adapted turbulence levels.

Sanz-Ronda et al. (2015)used a �ume without installations to obtain

maximum swim speeds of 36 barbels (BL= 17:9 cm) and 28 nase (BL =

61:9 cm). The �ume dimensions were L � W � d = 25 m � 0:5 m � 0:6 m

and tested average �ow velocities wereU = 1 :5 m/s, 2.5 m/s, 3.0 m/s. An

observation was that the majority of �sh ( 90:3 %) swam in a distance of

8.4�18.7 cm from either wall, avoiding both close wall contact and slightly

higher velocities in the �ume center. A major �nding was that both s pecies,

despite not reaching their theoretical maximum distance, largely exceeded

previous �ndings of their prolonged and burst swimming speeds with swim

speeds exceeding 20 BL/s.

Rodríguez et al. (2015)acquired data of 259 barbels, nase, and brown

trout (BL varied, 30 cm max.), to develop an optical tracking methodology.

The �sh moved upstream in a vertical slot �shway model (pool dimensions

L � W � d = 1 :85 m � 1:5 m � 1:0 m). Their tracks were analyzed to obtain

resting zone preferences in the pools. A position preference for the low-

velocity area on the right side downstream of the slot was identi�ed.

Kerr et al. (2016) utilized 118 brown trout, 14 of them caught in the wild

(BL = 11�29 cm), for comparing the results of 2D swimming in the wakes

of two di�erent vertical cylinder arrangements in a �ume (experim ental area

L � W � d = 2 :94 m � 1:4 m � 0:6 m). Visual cues were eliminated through

sheeting the �ume. Observations were made using low light cameras and

infrared lighting. From the information in the paper, I calculate the av erage

�ow velocity to be Um = 0 :15=(0:27� 1:375) = 0:40 m/s. Kerr et al. (2016)

proposed a new metric for drag,D / Um
p

U2
m + � 2

v + � 2
z , where� is standard

deviation of velocity U. The metric incorporates both mean and �uctuating

velocity components to serve as a proxy for energetic cost in holding.

2.1.2 Fish behavior in dam tailraces

This section outlines challenges and �ndings of tracking upstream migrating

�sh in dam tailraces to identify behavior patterns. The only applicab le way

to observe �sh behavior in small-to-mid scale in medium-sized rivers like the

German federal waterways is to combine acoustic or radio transmitters(tags)

in the �sh with external receivers (Figure 2.3). Fish positions are interpolated
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Figure 2.3: Tailrace of the Eddersheim dam on the German Main river (left), tag
insertion into an anesthetized �sh (right).

from run time di�erences of signals sent by the tags and received at multiple

positions.

For downstream migrating �sh, especially juvenile salmon, 3D measure-

ments close to hydropower dams are in use for decades (McMichael et al.

2010). The technology bene�ts from directed �ow upstream of the power-

house and deep (> 10 m) water in forebays e.g. in the US Paci�c Northwest.

For upstream migrating �sh in tailraces, which are highly turbulent d ue

to the draft tube out�ow and often much shallower (< 5 m in federal wate r-

ways), measuring is much more complicated. Entrained air, turbulence, and

noise a�ect acoustic systems. That is a probable reason why there are few

data sets worldwide for upstream migrating �sh close to hydropower dams.

Table 2.1 summarizes parameters of four studies to demonstrate the current

opportunities. Two studies showing bank-related patterns are described in

detail in the following.

Lowell dam � This tailrace on the Merrimack River, Massachusetts,

USA, was investigated in the past using 1D telemetry (Sprankle 2005) and,

more recently, using 3D telemetry on 60 tagged adult American shad (Alosa

sapidissima) (Hogan et al. 2012). The focus of the latter investigation was on

the entrance of the local �sh lift. Of all tagged �sh, only two were successfully

lifted. Density plots of the preferred locations in the tailrace showed a pattern

in form of a horseshoe (Figure 2.4).

Três Marias dam � Private �rm HTI conducted a 2D/3D tracking study

in the tailrace of the Três Marias dam (65 m high), São Francisco River,

Brazil (Steig et al. 2013; Suzuki 2014; Suzuki et al. 2017). The researchers
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Figure 2.4: Top view of the Lowell dam tailrace showing density of shad presence
(Hogan et al. 2012, p. 10). Flow from bottom to top right, 200 ft � 61 m.

used an HTI Model 291 Acoustic Telemetry System with 11 hydrophones.

The detection range was over 100 m despite the turbulent white water.Of

the 90 �sh tagged in total, 74 yielded results. Results indicated that mandi

(Pimelodus maculatus) and curimatá (Prochilodus argenteus) preferred to

stay in the middle of the water column. Curimatá favored the shoreline

during low �ows and the area immediately above the draft tube outlets and

a certain part of the shoreline during high �ows (Figure 2.5).

Figure 2.5: Top view of the Três Marias dam tailrace for low and high discharges
(Scenario A resp. B) (reproduced from Suzuki 2014, p. 82). Color indicates diurnal
relative presence of curimatá. Flow direction from bottom to top.
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Table 2.1: Parameters of telemetry studies in tailraces of hydropower dams worldwide. w = typical river width at dam; d = typical
water depth, subject to water level �uctuations; Dist. = Minimum streamwise distance of tracked positions from the dam;� x = typical
spatial resolution; � t = typical temporal resolution.

Dam Month/Year Evaluated �sh w [m] d [m] Dist. [m] � x [m] � t [s] Reference

Eddersheim Fall 2014 60 of 5 spp.1 180 4�5 ~350 <5 40 A. Rüter, (pers. comm., 2017)
04�11/2015 81 � � � ~350 � � �
10�12/2016 61 � � � 0 1.5�6 ~20 Thelma Biotel (2017)

Lowell 05�06/2011 28 shad 27 5�10 0 <1 2.0�2.6 Hogan et al. (2012)
Ruswarp 09�12/2013 31 sea trout, 8 0.5�1.5 0 <1 2.5�2.8 Noble et al. (2014)

1 salmon
10�12/2014 32 sea trout, � � � � � Noble et al. (2015)

2 salmon
Três Marias 10/2011� 39 curimatá, 160 14 0 1 3.2�5.3 Suzuki (2014)

02/2012 35 mandi

1) Spp., species: Asp, nase, ide, perch, roach (German: Rapfen, Nase, Aaland, Flussbarsch, Rotauge).
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2.1.3 Discussion

The reviewed literature on �sh behavior observations provides insights on

hydraulic stimuli, geometric preferences, and data availability.

Hydraulic stimuli possibly relevant for behavior model development can

be divided in velocity and turbulence parameters.

High velocity jets were avoided by juvenile brown trout, chubs, and bar-

bels, which stayed in recirculation zones on both sides of the jet inthree

vertical slot way models (Wang et al. 2010; Cornu et al. 2012; Rodríguez

et al. 2015). Hence, low-velocity attraction could be a useful model stimulus.

Turbulence investigations revealed that dace preferred constant TKE and

Reynolds stress levels in their direction choices in the study ofGoettel et

al. (2015). Kerr et al. (2016) showed that a new drag coe�cient can ex-

plain position choices in trout. Still, the authors state that �the sele ction of

appropriate hydrodynamic metrics that predict space use is the subject of

recent debate and a cause of controversy�. Goettel et al. (2015) con�rm that

turbulence in�uence on �sh is an active �eld of research and does not allow

for direct implementation in a model without comprehensive testing. TKE

is selected to be tested in ELAM-de, as it is a common metric and was used

in IBMs before (Gao et al. 2016).

The concept of a trade-o� between energetic bene�ts and costs to explain

position choice of brown trout was used by Kerr et al. (2016). However,

this explanation is valid only for short-term holding behavior. For modeling

migration and upstream movement, energetic cost need to be balanced with

bene�ts in a larger sense, e.g. spawning pressure, which were notincluded

in the study. Hence, this approach will not be pursued.

Location preference for the �ume side wall and bottom proximity was

found for trout by Przybilla et al. (2010) and for dace by Goettel et al. (2015).

The entraining mechanism could contribute to this behavior as wellas ori-

entation and cover. It contrasts with the study of Sanz-Ronda et al. (2015),

where wall distance was larger for adult barbels and nase. Fish tracking re-

sults from two dam tailraces suggest that shad and curimatá prefer shore

vicinity while migrating upstream. I suppose that orientation, cover, and

hydraulic features such as low �ow velocity are reasons for this observation.

However, only low-velocity attraction behavior can be tested in theIBM. A

detailed investigation of entraining would require modeling the actual drag
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of a �sh body in the water. Because of the expected massive computational

e�ort and because this level of detailed understanding is not required, this

approach is not pursued in this work.

For the goal of identifying �sh movement patterns in small-scale, high-

resolution spatial and temporal observation data is required. With respect

to future extensions to model behavior in a dam tailrace, a large observation

area is required. There are few results for 2D and 3D �sh tracking in dam

tailraces (Table 2.1), including only one peer-reviewed study. They do not

match the required resolution. The �ume studies reviewed have in common

that either movement was tracked just in a limited part of a �ume, e. g. a

single standard pool of a �shway, or that a larger part of the �ume was

observed, but movement data were comparatively coarse. The study inthe

EHF conducted by BAW and BfG in 2016 overcomes this issue. Hence, it is

suited as the data basis for developing and evaluating the new IBM.

2.1.4 Conclusions

The �rst part of this chapter reviewed recent work in �sh behavior ob serva-

tion for upstream movement close to hydraulic structures both in laboratory

and nature scale. There are three main �ndings for model development.

1. The 2016 EHF data set was con�rmed as the most suitable data source

for model development, as it was the only study to feature detailed

spatial observations in a large pool.

2. A preference for the area on the right side downstream of a slot was

found in the �ume studies of Wang et al. (2010), Cornu et al. (2012),

and Rodríguez et al. (2015). I suppose that upstream migrating �sh

prefer resting in such areas of generally reduced velocity and/or re-

circulation. Hence, low-velocity attraction will be tested as a model

stimulus.

3. Diverse hydraulic stimuli were used in �ume studies without clear re-

sults. Thus, testing is needed in any case. I selected 3D velocity, U,

and turbulence kinetic energy, TKE, for a start.
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2.2 Ethohydraulic �ume (EHF) study

In April 2016, active use of the new �sh behavior test �ume of BAW and BfG

in Karlsruhe, Germany, started. It is named the ethohydraulic �ume, EHF1,

or �ume, in this work. The 2016 test series (Figures 2.6 and 2.7) compared

di�erent designs of adding auxiliary discharge into the entrance poolof a

�shway using passage times of �sh swimming upstream volitionally.

Figure 2.6: The ethohydraulic �ume in the 2016 long screen con�guration. Water
�owing towards observer, �sh moving away from observer.

Figure 2.7: The ethohydraulic �ume as seen from the observation area on the
�ume right, encased by black curtains. Water �owing from left to righ t, �sh moving
from right to left.

Methods, descriptions, and data from this experiment are currently being

prepared for publication (Schütz et al. 2017). Information and data necessary

1Ethohydraulics is the combination of ethology and hydraulics as de�ned by Adam and
Lehmann (2011).
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for ELAM-de development were kindly provided by the authors. This section

summarizes setup information directly relevant to this work. Some detail

information about aims, setup, and hydraulic results of the tests can be

found in Czerny and Schütz (2017).

Hydraulic methods

The EHF is a large indoor recirculating �ume with a total length of 60 m.

The experimental area length, width, and water depth areL � W � d = 11:78 m�

2:50 m� 0:60 m (Figure 2.8). Two geometrical parameters were varied in two

states each. Slot walls were inserted (setup 1) or removed (setup 2) to alter

�ow velocity from the upstream pool, and the length of the auxiliary di s-

charge bar screen was long (setup A) and short (setup B). Table 2.2 shows

the four resulting setups combined with �ve species.

The �shway in�ow was QFAA = 0 :200 m3=s and the auxiliary in�ow was

QDot = 0 :800 m3=s in all setups (Figure 2.8). The outlet water level was

�xed at h = 0 :60 m from the �ume bottom. The bottom was not sloped.

The horizontal screen bars had a rectangular cross-section, a vertical width

of 12 mm and light distance of 15 mm. The long and short screen lengths were

L s;A = 6 :56 m and L s;B = 3 :28 m, respectively. The �shway and auxiliary

inlet widths were WFAA = 0 :75 m and WDot = 1 :72 m, respectively. Slot

width was WSlot = 0 :30 m. The left wall (seen in �ow direction) was covered

in gray to reduce visual distraction of the animals. The right wall was made

of glass to allow observation. To minimize visual cues, the observation area

was encased in black curtains.

Biologic methods

About 500 �sh of �ve species representative for the German federal water-

ways' �sh fauna were tested in total (Table 2.2). All care and procedures

involving handling and holding �sh were conducted as stated and permitted

by the Regierungspräsidium Karlsruhe (license no. AZ 35-9185.82/A-6/16).

Fish were released in batches of three of the same species. This was

the maximum number where visual tracking was possible, as they werenot

marked to reduce handling stress and to prevent anesthesia impact.

Four control lines A� D were de�ned at particular x positions (Figure 2.8).

They mark the beginning (seen in �sh movement direction) and end ofthe
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Table 2.2: Overview of data sets obtained from the 2016 ethohydraulic �ume tests.
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Scienti�c Chondros- Gobio Alburnoides Rutilus Salmo trutta

toma nasus gobio bipunctatus rutilus (fario)

Slot Long screen 1a-A 1b-A 1c-A 1d-A 1e-A
Short screen 1a-B 1b-B 1c-B 1d-B 1e-B

No slot Long screen � � 2a-A 2b-A1 2c-A
Short screen � � 2a-B 2b-B1 2c-B
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two screens, and the �nish slot position. The time of the �rst crossing of

each line was captured for each individual using a stopwatch buzzer system

connected to a laptop computer.

Most �sh were caught by electro�shing in small tributaries to the Rh ine

river including Alb, Ettenbach, Kinzig, and Rench streams. Only nase were

caught in the I�ezheim �shway trap at the Rhine river. After complet ion

of a test, �sh were returned to their original water body. Fish were held

in aerated tanks and set to the start area for 10 min before each test to

acclimatize. After that time, the mesh screen was removed and the �sh were

free to move. Test duration per �sh was de�ned as the di�erence between

the �rst passage of linesA resp. D or the test end, which was at maximum

60 min after the �rst �sh passed line A.

Spatial positions and times were noted manually by two BfG biologists

for each of the three individuals. Table 2.3 shows an example. The digitalized

records provided by BfG include longitudinal position at the side wall pillars

(see Figure 2.8), lateral position at either side wall resp. screen, andvertical

position at either bottom or surface of the water column. They were noted

following any noticeable position change (event). A similar approach was

used by Goettel et al. (2015) using video images. Since positions were not

noted downstream of pillar 19 (except for returns to the start area) and

upstream of the slot (x > 9:74 m resp. x < 0 m), these areas were excluded

from analysis.

The longitudinal accuracy was about the side wall pillar distance (~1 m).

The lateral accuracy was in the order of several decimeters, because wall and

screen proximity are easier to spot and remaining positions were summa-

rized as �middle�. The vertical accuracy was also in the order of decimeters;

the noted positions in the water column were bottom, middle, or surface.

Events were attributed to the current test minute. If multipl e events hap-

pened within one minute, seconds were obtained using linear interpolation,

assuming the same duration for every event recorded. The temporal accu-

racy is obviously decreased for multiple fast actions within a few seconds,

where it is possible that not every single event was noted.

As with every manual detection method, a certain amount of error and

averaging is present in the data set. It was minimized by double-checking

with the second protocol (C. Schütz, BfG, pers. comm., 2017).

Additionally, �sh-eye cameras were positioned at 11 spots across the
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Table 2.3: Example for digitalized manual (�raw�) records including interpolated
times (dd.mm.yy hh.mm.ss), shoal size, and interpolated 3D coordinates, which
are only used for visualization purposes.x raw means the respective number of the
side wall pillar; yraw contains L = left, M = middle, R = right; zraw contains b =
bottom.

Fish ID Time-stamp Shoal x raw yraw zraw x (m) y (m) z (m)

1e-16_F1 07.11.16 12:16:20 1 21 L b 11:78 2:4 0:01
1e-16_F1 07.11.16 12:16:25 1 19 L b 9:74 2:4 0:01
1e-16_F1 07.11.16 12:16:30 1 19 M b 9:74 1:15 0:01
1e-16_F1 07.11.16 12:16:35 1 18 M b 8:72 1:15 0:01
1e-16_F1 07.11.16 12:16:40 1 18 R b 8:72 0:1 0:01
1e-16_F1 07.11.16 12:16:45 1 16 R b 7:49 0:1 0:01
1e-16_F1 07.11.16 12:16:55 1 21 R b 11:78 0:1 0:01
1e-16_F1 07.11.16 12:22:10 1 21 R b 11:78 0:1 0:01

longitudinal x axis, facing the lateral y direction with overlapping �elds of

view (Figure 2.9). In this work, they were used for qualitative checking of

the manual records.

2.2.1 General results

To investigate hydraulic in�uence in the behavior model, a comparison of

setup 1 (with slot) and setup 2 (without slot) using the same species was

reasonable, because hydraulic di�erences between these two setups were most

pronounced. I selected the brown trout data sets,1e-A and 2c-A (Table 2.2),

as they had the highest number of successful �nishers compared to the schnei-

der and roach tests without slot, 2a and 2b. This was important as only

�nishers yield data for the whole investigation area. Brown trout results for

the short screen setups2c-A and 2c-B are also considered in this chapter for

comparison, but not used for behavior model testing.

The mean and standard deviation (SD) of trout body length was BL =

0:26� 0:04 m for data set 1e (N = 63) and BL = 0:27� 0:04 m for data set

2c (N = 57). As the means are similar, it was possible to apply a �xed BL =

0.27 m for the behavior model and pattern analyses.

The behavior model presumes a basic motivation for upstream migration.

However, only for �sh caught directly in a �shway it is safe to assume they

are motivated to migrate upstream. For trout, which were caught in the small

Alb river (mean annual �ow approx. 2:4 m3=s 23.5 km upstream of mouth),

the motivation was unclear. Movement activity was chosen as approximation:
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Figure 2.9: Three brown trout in front of the slot, sample view of camera 1.

Fish which did not cross line A within 30 min after removing the start

mesh screen were excluded from analysis. Subjects passing lineD within

90 min after start were listed as ��nishers�. In some cases, �sh returned to

the experimental area after passing the slot. These data points werealso

excluded from spatial analysis. After �ltering, scenarios 1e-A, 2c-A, 1e-B,

and 2c-B had N = 25; 24; 24; 22 valid �sh tracks, respectively.

To allocate durations, � t, to position data, time stamps of the recorded

data were subtracted from each other (see Table 2.3).� t was allocated to

the respective earlier data point. This introduces bias towards earlier data

points, especially for large � t. A way to mitigate this bias would be to

interpolate � t between two data points. However, this would imply that

�sh moved with a constant speed, which is also a simpli�cation. Hence, the

approach chosen was kept.

2.2.2 Pattern analysis

Patterns (section 1.2) are well-suited for characterizing biological data sets

and for evaluating associated models (Grimm and Railsback 2012).

Spatial data analysis was based on the manual position notes. From video

footage and anecdotal observations of all species tested in the �ume, four

potential spatial patterns were identi�ed. They were named wall proximity

preference,bottom proximity preference,turns in main movement direction,

and group interaction. Still, they required quanti�cation to con�rm their
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existence, as described in this section. Spatial analysis was divided into 2D-

horizontal (wall proximity) and 1D-vertical (bottom proximity) compon ents.

Chronological aspects were not considered as time data was pooled.

Temporal data analysis was based on the stopwatch times and yielded

two additional patterns.

Note that the de�nitions developed in the following are valid both for

observations in the physical model and numerical behavior model to enable

direct comparison during model development (chapter 5). Both physical and

numerical position data are analyzed using a custom MATLAB script.

Wall proximity

From subjective visual impressions of the tests, all species appeared to prefer

side wall proximity. The possible pattern wall proximity is de�ned here as

ˆ Wall proximity: Fish body center of mass in a lateral distance of� y <

0:25 m (10 % of �ume width) to one of either side walls.

In the laboratory, the �sh body center is estimated visually, in the behavior

model it is known exactly. For analysis, the �ume is horizontally div ided into

rectangular cells, 10 in longitudinal direction, and 3 in lateral direction. This

forms three zones named �left�, �middle�, �right�, seen in �ow direction . The

outer zones are� y = 0 :25 m wide, the inner zone has a variable width. The

screen is treated like the side walls as it forms a geometric swimming barrier.

Time spent by single �sh is summed up for each cell. However, these

sums strongly depend on the total time a �sh was observed (e.g. Rodríguez

et al. 2015). This approach can lead to wrong conclusions if total times di�er

widely, as in the present data set. To account for these di�erencesand to

get robust information, resulting absolute times per �sh and cell, tcell;i , are

divided by the �sh's total track duration, ts;i , to get a track fraction, scell .

scell = tcell;i =ts;i is then averaged by dividing through the �sh count, N , to

get:

�scell =
1
N

NX

i =1

tcell;i

ts;i
� 100 [%] (2.1)

where i is the �sh iterator. The resulting proportions are that of the typical,

average �sh of the data set computed.
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Figure 2.10: Top view of the ethohydraulic �ume showing relative averaged hor-
izontal track fractions, �s, of brown trout for (a) slot and (b) no-slot con�gurations
(data sets 1e-A and 2c-A). Two cells are used at the screen when coordinates in-
terpolated for visualization were ambiguous. No information are available near the
start area from x > 9:74 m. Flow from left to right, N �sh move from right to left.

Table 2.4: Horizontal position average track time fractions (mean � standard
deviation) for brown trout data sets 1e and 2c. Orientation facing downstream,
fraction missing from 100 %is round-o� error. Note that �middle� zone represents
80 % of the �ume width.

Screen Geometry N Left (%) Middle (%) Right (%)

Long Slot (1e-A) 25 35� 37 8 � 12 57� 38
No-slot (2c-A) 24 39� 39 5 � 10 56� 40

Short Slot (1e-B) 24 11� 23 11� 21 78� 32
No-slot (2c-B) 22 40� 43 10� 13 50� 41
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From the visualization and numbers of horizontal location distribution

(Figure 2.10, Table 2.4), a clear preference for the sides of the �ume over the

middle area is visible for both slot setups. In both cases the mean distribution

is shifted towards the right hand side consisting of a glass wall. The standard

deviation is high and in the order of the means, indicating large variability

between individual tracks. The triplet of percentages forms the horizontal

behavior pattern, P(1).

Bottom proximity

From subjective impressions of the tests, all species appeared to prefer swim-

ming close to the �ume bottom. This potential pattern is de�ned here as

ˆ Bottom proximity: Fish body center of mass in a vertical distance of

� z < 0:15 m to the �ume bottom. The same distance is chosen for the

water surface, the remaining0:30 m of the water column represent the

vertical middle.

Tracks are averaged in analogy to the horizontal pattern. However, as the

data are one-dimensional, three categories of di�erent height are su�cient

for the track average fraction, �svert :

�svert =
1
N

NX

i =1

tvert;i

ts;i
� 100 [%] (2.2)

using the total number of �sh tracks N , the �sh iterator i , time spent on a

vertical level per �sh tvert;i , and track duration per �sh ts;i .

The supposed preference for bottom proximity is observed in all trout

scenarios (Table 2.5). The three percentage values form the pattern P(2).

Table 2.5: Vertical position average track time fractions (mean � standard devia-
tion) for brown trout data sets 1e and 2c. Fraction missing from 100 %is round-o�
error. Note that �middle� zone represents 50 % of the �ume depth.

Screen Geometry N Surface (%) Middle (%) Bottom (%)

Long Slot (1e-A) 25 0:6 � 1:8 0:6 � 2:1 98:8 � 3:3
No-slot (2c-A) 24 4:1 � 16:9 0:2 � 0:6 95:5 � 17:4

Short Slot (1e-B) 24 0:7 � 2:2 1:7 � 5:0 97:5 � 6:3
No-slot (2c-B) 22 1:3 � 2:9 10:2 � 22:1 88:5 � 22:3
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Turns

From subjective impressions of the tests, back-and-forth movements in the

�ume longitudinal direction were a typical behavior. This potential pattern

consisted of repeated turns, which I de�ne as

ˆ Turn: Change in the longitudinal movement direction, x, leading to a

displacement of� x � 1 BL up to the following change in direction.

Automatic detection of turning points in the data requires special care, be-

cause it is easy to miss or to produce false positive detections. Thebasic

idea is to compute the di�erence � x between the data points in longitudi-

nal direction and to detect sign changes between them. This yields the local

extrema (MATLAB script extremePoints.m, appendix C).

0 10 20 30 40 50 60 70

Data point [-]

5

6

7

8

9

10

11

12

x 
[m

]

Notation limit
Turn detected

Ignored

Plateau,
turn

Plateau,
no turn

Figure 2.11: Automatic turn point detection on an example track (trout ID 1e-
02_F1 ). Above the notation limit at x = 9 :74 m only visits to the start area were
noted, which were excluded from the turning point count.

However, this approach does not work readily for holding phases, when

the �sh stops and the plotted track forms a �plateau�. If the plateau is

perfectly even (which is the case for the laboratory data, as only considerable

changes were noted), then� x = 0 , which can be used to detect both edge

points of a plateau. Next, the signs of� x before and after the edge points

can be compared to (a) �lter out holding in between a movement without
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direction change and (b) to merge holding phases interrupting a turn. Last,

� x < 1 BL and detections at x > 9:74 m are �ltered out. Filtering must be

performed in the end, because otherwise the� t computation is disturbed.

Figure 2.11 shows that automatic turn detection worked correctly.

Next, turn probability is averaged per �ume length third by the numb er

of tracks with more than 4 turns, N turn .

Pturn =
1

N turn

N turnX

i =1

N turn; 3rd;i

N turn;i
� 100 [%] (2.3)

where N turn; 3rd;i is the number of turns per �ume third per �sh, N turn;i is

the total number of turns per �sh, and i is a �sh iterator.

Results are visualized in Figure 2.12 and reported in Table 2.6. More

than half of the �sh in all data sets performed 4 or less turns, and the

number for turns for the remaining �sh varied largely between 5 and 77

(data set 1e-A). To get meaningful turn probabilities, the data sets were

split into turning and not-turning �sh. The latter were not consid ered for

mean and SD calculations. The resulting turn probabilities per �ume third

are de�ned as pattern triple P(3) and the portion of tracks with few or no

turns, Nno� turn =N, is identi�ed as the (unexpected) pattern P(4).

Group interaction

Fish which stay together in a group volitionally are shoaling. If a �sh group

additionally moves both synchronized and polarized, it isschooling (Pitcher

and Parish 1993). Shoaling advantages can include foraging, mating, and

predation resistance (Viscido et al. 2004). Schooling additionally provides

hydrodynamic advantages reducing energy consumption (Liao 2007).

As the �sh in the EHF study were released in groups of three, it was

possible to observe group interaction. The tests were not suitable toidentify

the motivation or reason. Thus, the term shoaling is used in its most general

de�nition here.

For this work, shoaling is de�ned as follows.

ˆ Shoaling: Another �sh's center of mass is inside a radius of 1 BL around

a focal �sh's center of mass.

Note that this de�nition results in a detection sphere (radius here: 1 BL =

0.27 m) even though a �sh body resembles an ovoid.
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Figure 2.12: Visualization of (discrete) turn probability, Pturn , for data sets (a)1e-
A (with slot) and (b) 2c-A (without slot) per thirds of the experimental area length,
L = 9 :74 m, averaged overN turn �sh tracks. Flume top view shown as insert on
the �gure bottom. Each error bar represents two standard deviations.

Table 2.6: Values of (discrete) turn probability (mean � standard deviation) for
brown trout data sets 1e and 2c per thirds of the experimental area length (up-
stream, middle, downstream third) averaged overN turn �sh tracks. Fraction missing
from 100 %is round-o� error.

Screen Geometry N Nturn
Nno -turn

N Upstream Middle Downstream

Long Slot (1e-A) 25 10 60 % 26� 20 % 28� 18 % 47� 17 %
No-slot (2c-A) 24 12 50 % 28� 18 % 40� 16 % 33� 26 %

Short Slot (1e-B) 24 10 58 % 41� 22 % 30� 12 % 29� 13 %
No-slot (2c-B) 22 7 68 % 39� 06 % 33� 20 % 27� 19 %
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The probability for an average �sh to choose its shoal size (1; 2; or 3) is

computed by averaging the correspondent probabilities per �sh track:

�Psize =
1
N

NX

i =1

 
tsize;i

ts;i

!

� 100 [%] (2.4)

where N is the number of �sh tracks, tsize is the duration of a certain shoal

size, measured by the detection sphere,ts is the total duration of a �sh track,

and i is the current �sh track.

Results for trout are reported in Table 2.7. Signi�cance analysis using

the two-sided t-test (� = 5 %) did not reveal consistent trends based on the

hydraulic setups.

Table 2.7: Track duration spent without a shoal (single), in a shoal of two (duo),
and in a shoal of three (trio). Relative fractions (%) averaged across �sh tracks from
data sets1e and 2c. Fraction missing from 100 %is round-o� error.

Screen Geometry Single Duo Trio N (�)

Long Slot (1e-A) 61.1 16.0 22.9 25
No-slot (2c-A) 61.8 35.3 2.9 24

Short Slot (1e-B) 57.4 25.9 16.8 24
No-slot (2c-B) 44.0 23.0 33.0 22

Time and success

The arrival times at the four event lines A�D (see Figure 2.8) describe ad-

vance of the trout. They are much more precise than the spatial information

analyzed above, as human interaction was minimized. However, they are

limited to the longitudinal dimension (1D).

For comparison, the durations between the �rst A crossing and the �rst

C and D crossings, respectively, are chosen. The are termedAC and AD .

The number of �sh crossing these lines within the test duration areNA and

ND . A high AC=AD metric means small delay betweenC and D. A high

ND =NA metric means good passage along the screen.

Results are reported in Table 2.8. On average, trout take longer for pass-

ing AC if no slot is present. However, this di�erence is not statistically

signi�cant and not used for model testing. The AC=AD metric increases

signi�cantly if no slot is present (Schütz et al. 2017). It will be used to test
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the behavior model as pattern P(5). TheND =NA metric describes the overall

e�ectiveness of the setup and will be used as pattern P(6).

Table 2.8: Median passage times,AC and AD , (s), �nisher counts, NA and ND ,
(�), and ratios (%) of brown trout. Individuals censored if they did not cross lineA
within 30 min after start. Line C arrivals �ltered according to line D arrivals. See
Schütz et al. (2017).

Screen Geometry AC AD N A ND AC=AD N D =NA

Long Slot (1e-A) 49 270 25 21 18.1 84.0
No-slot (2c-A) 119 252 24 19 47.2 79.2

Short Slot (1e-B) 84 295 24 21 28.5 87.5
No-slot (2c-B) 159 175 22 21 90.9 95.5

2.2.3 Discussion

Spatial and temporal behavior data of trout in sub-meter and seconds scales

was analyzed and six patterns were identi�ed (four spatial and two tem-

poral/success patterns). It was not possible to separate movement and mi-

gration behavior in the �ume. Only actively moving �sh were considered to

approximate the motivation to migrate. The �ume investigations were not

originally designed for analyses of movement patterns, which means thatno

statistically valid interpretation is possible. For example, the stress �sh may

have when being tested in an arti�cial �ume situation was not considered.

To account for that, further work is necessary. Still, the accuracy is su�-

cient for developing and testing a behavior model, as not exact values, but

characteristic qualitative patterns are needed (Grimm and Railsback2012).

Some possible explanations for the patterns are discussed here in relation to

previous work.

Conceivable explanations for horizontal distribution, pattern P(1), in -

clude visual or hydraulic orientation by the walls and screen, need forcover,

and even hydrodynamic advantages of a suction force from swimming close

to the walls (entraining, Przybilla et al. 2010). Visual orientation seems less

important though, as qualitative wall preference was observed for trout be-

fore in a dark �ume (Figure 4 in Kerr et al. 2016).

A possible explanation for the bottom proximity pattern, P(2), is the

need for shelter, e.g. from aerial predators, which could let �sh choose the

maximum distance from the water surface possible in the shallow �ume
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(d = 0 :60 m). Additionally, proximity to any kind of surface, as observed for

the side walls and screen, provides orientation. The aspect of reduced energy

consumption due to reduced �ow velocity at the bottom is not applicable

here. Because of the smooth surface, velocity magnitude was not markedly

reduced by bottom friction (section 3.4.2). The behavior resembles anecdotal

observations on rainbow trout communicated by Przybilla et al. (2010).

The no-turn ratio Nno-turn =N, P(4), was 50 % or more for all setups.

This high amount of �sh with 4 or less turns indicates that about half of

the trout had no problems reaching the �nish line, neither becauseof �ow

velocity nor motivation to move. These �sh were not considered for proba-

bility calculation, because having a low number of turns per third leads to

extreme percentage values, which highly increase SD. This approach reduced

the track number noticeably, making the coarse division of the �ume into

thirds necessary to obtain enough data for a meaningful average per third.

Hence, no distinct connection between turning point probability and �ume

geometric features could be identi�ed. The same is true for hydraulic fea-

tures, which are strongly linked to geometry (section 3.4). I speculate that

for species smaller and weaker than trout, which were not investigatedhere,

there might be a stronger connection between turning points and �ow/geom-

etry features, as they are more prone to fatigue and turbulent �uctuations.

However, more detailed observations would be required to generate enough

data points for detailed spatial turn analysis.

For group interaction, I assume that the track fraction spent in groups

by trout is too small for analyses. Therefore, no pattern is identi�ed for

behavior model testing.

Trout have overall high passage quotesND =NA , indicating high passage

e�ectiveness.

Increase ofAC=AD for the no-slot setups, showing a smaller delay in

the slot area, could be caused by either reduced velocity, or the missing

geometrical barrier, or a combination of both.

2.2.4 Conclusions

In the second part of this chapter, I presented and analyzed trout behavior

data from the 2016 ethohydraulic �ume study to obtain patterns for behav-

ior model development. The brown trout data sets, 1e-A and 2c-A, were

selected.
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From the spatial analysis, four pattern metrics, P(1�4), were de�ned:

Three triples of percentage values for wall proximity, bottom proximity, turn

probability, and a scalar for no-turn probability.

Time and success analyses were more accurate than the spatial analyses,

as data collection involved considerably less human interaction. Timeana-

lyses indicated that the time delay for passage through the slot was smaller

(higher ratio AC=AD ) for setups without a slot compared to setups with a

slot. Success analysis showed the ratio of �nishers describing the e�ective-

ness of the setup. Two additional pattern metrics, P(5�6), were de�ned for

behavior model testing.

Next, hydraulic model input needs to be generated.
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Hydraulic model of a �ume

The goal of this chapter is to develop and validate 3D computational �uid

dynamics models of the EHF to be used as input for ELAM-de. A numerical

simpli�cation to the screen geometry is tested and discussed using velocity

measurements.

3.1 Computational �uid dynamics (CFD)

Building and running a CFD model of a generic lab �ume is straightforward

for a trained modeler, as the geometry is rectangular and the boundary

conditions are known exactly. Hence, few detailed descriptions of such models

are published. More studies deal with modeling the �ow through �shways,

which can be installed in �umes by adding pool walls and possibly a bottom

slope. Recent examples include Haselbauer and Barreira Martinez (2011)

and Duguay et al. (2017). They illustrate the variety of numerical and post-

processing options arising from simple deviations from the rectangular �ume.

For CFD modeling in this work the open source toolbox OpenFOAM1 is

used. OpenFOAM consists of numerous libraries written in C++, providing

a framework for numerical calculations in continuum mechanics (Weller et al.

1998). Further included are ready-to-use applications, most of them dealing

with CFD problems. A variety of turbulence models, discretization schemes

and solver algorithms are provided. The acronym FOAM is short for Field

Operation and Manipulation.

OpenFOAM works on meshes consisting of unstructured, polyhedral,

1Build: 2.3.1-262087cdf8db
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three-dimensional cells (OpenCFD Limited 2011, p. U-127). They are re-

ferred to as polyMesh and allow for maximum geometric �exibility of the

numerical domain. The shipped tools blockMesh and snappyHexMeshare

applied for mesh generation. Details about mesh generation with these tools

can be found in Gisen (2014).

I employ the solver interFoam, which is included in OpenFOAM and

tailored to free surface, unsteady �ows (Schulze and Thorenz 2014). It dis-

cretizes the incompressible Navier-Stokes equations using the Finite Volume

Method (FVM) and solves the resulting equation system in combination

with a turbulence model. The Volume-of-Fluid (VOF) approach is ut ilized

to track the free surface by simulating two phases, water and air. For turbu-

lence closure, I chose thek-! -SST RANS model implemented in OpenFOAM

(Menter and Esch 2001). RANS (Reynolds-averaged Navier-Stokes) model-

ing mathematically separates turbulent �uctuations from the mean �ow .

k-! -SST uses a function to blend between the turbulence modelsk-� , used

in a distance to walls, andk-! , used in wall proximity. This approach aims

to counter the weakness ofk-� in adverse-pressure boundary layers and sen-

sitivity of k-! to the ! boundary condition at free-stream boundaries (Rodi

2017).

3.2 Structured and unstructured meshes

The are two concepts for dividing space for computations which are called

unstructured and structured approach.

Structured meshes (grids) allow cell access by an index value, comparable

to cell access in a table. Deviations from the structure, e.g. local re�nement

or sudden geometry changes, are only possible using multiple blocks (Fig-

ure 3.1a). Meshes in block-ordered, structured form can be converted to

contravariant space. In contravariant space, all spatial units of a blockare

rectangular and the same size, one. Positions in the cells are de�ned as parts

of one in all three dimensions.

Unstructured meshes can not be transferred to contravariant space (Fig-

ure 3.1b). However, they allow much more �exibility in recreating t he geom-

etry by making use of polyhedron cells.
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(a) Structured mesh in 2D Cartesian and con-
travariant space (Goodwin et al. 2006, p. 203).

(b) Unstructured mesh in 3D Carte-
sian space.

Figure 3.1: Di�erence between structured and unstructured meshes.

3.3 Flume CFD model and velocity measurements

The 3D CFD model domain represented the EHF physical model described

in section 2.2. Four base models were developed analogous to the setups

with/without slot and long/short screen. The setups without slot were ar e

analyzed here. The base resolution of the hexahedron-dominant unstructured

mesh generated usingsnappyHexMeshwas uniform � x = � y = � z = 5 cm,

with local re�nement to 1:25 cm around and downstream of the slot and

vertical screen pillars. The horizontal bars of the bar screen were excluded,

as they would require high local mesh re�nement. The assumption thattheir

in�uence on the �ow is negligible small was tested as described below. Total

cell count for e.g. case1e-A was848 694cells. All automatic mesh checks in-

cluding aspect ratios, volumes, non-orthogonality, and skewness were passed

successfully. Figure 3.2 shows the �nal mesh.

OpenFOAM's interFoam solver was applied to solve the 3D unsteady

RANS equations (section 3.1). Boundary conditions were set for two inlets,

the side walls and bottom, the atmosphere on top, and the outlet. The inlet

�ow rates and �xed outlet water level were set as in the 2016 study. No-

slip conditions were set at all wall-type boundaries. The ELAM-de model

required the �sh outlets to be of type patch , internal walls to be in the

group internal , and all other kind of walls to be of type wall .

For turbulence closure thek � ! � SST RANS model was used. The tur-

bulence kinetic energy,k, (or, TKE) was set dependent on the �ow vector's

direction at the boundary: either to k = 0 :001 m2=s2 [= J =kg] for in�ow or to

grad(k) = 0 for out�ow. The same was true for the speci�c rate of TKE dis-

sipation, ! , with the only di�erence in the value chosen for in�ow, ! = 1 Hz.
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Figure 3.2: Cut through �nal mesh of long screen setup showing slot, pillars, and
re�nement regions.

The boundary layer was modeled using a simple wall function, as it wasof no

particular interest. A very small sand-equivalent roughness coe�cient was

set to represent the acrylic glass walls and bottom and the wooden internal

walls, kS = 1 � 10� 5 m.

Current velocities of all four setups were measured in the physical model

using side- and downlooking ADV (Acoustic Doppler Velocimetry) probes

(Vettori 2017). Averaging time was t = 120 s per point up to x = 2 :10 m

because high gradients were expected around the jet, andt = 60 s further

downstream. Horizontal point distances were� x = 0 :30 m, � y = 0 :10 m in

the �rst zone and � x = 0 :60 m, � y = 0 :30 m in the second zone. Data were

collected in two representative horizontal planes,z = 0 :40 m and z = 0 :07 m.

The upper plane was chosen at two thirds of the water depth,d = 0 :60 m.

The lower plane was chosen to capture possible boundary e�ects and because

�sh were often observed in bottom vicinity.
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Figure 3.3: 3D representation of the numerical �ume model with slot and long
horizontal bar screen (added in postprocessing), and the �sh start area(between
the two transparent planes on the right). Horizontal planes (upper one cut) show
average velocity magnitudeUm and are locatedz = 0 :07 m above bottom and at
the water surface, which is approx.z = 0 :60 m above bottom.

3.4 Results and discussion

Figure 3.3 shows an example model snapshot and Figure 3.4 presents results

of selected hydraulic parameters potentially suitable as model stimuli for

�sh orientation. j~aj and TKE were used before by e.g. Goodwin et al. (2014)

and Goettel et al. (2015), respectively. j~aj is the only one to resemble the

horizontal behavior pattern, P(1), for trout (Figure 2.10), by showing di stinct

changes towards the side walls and screen pillars. It will be testedas a

stimulus in chapter 5.

3.4.1 Jet alignment

In the setups with slot, a jet of higher velocity formed downstream of the

slot. It was visible at the water surface in the EHF physical model. However,

it could not be predicted whether the jet aligned to the left (bar screen)

or to the right (glass wall) even for identical boundary conditions (see e.g.
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Plane level z = 0.07 m

1e-04                1e-03                1e-02                  1e-01

acclMag (m/s^2)

Figure 3.4: Horizontal planes locatedz = 0 :07 m above bottom showing results of
di�erent hydraulic parameters potentially relevant to �sh orientat ion. Isolines are
inserted at the respective tick values, except for the min and max value. Except for
turbulence kinetic energy (TKE), all parameters represent the average �ow �eld.
Note that acceleration magnitude and TKE are scaled logarithmically.

38 BAW Dissertationen Nr. 1 2018



HYDRAULIC MODEL OF A FLUME

Adams and Stamou 1989). The alignment was stable, but could be adjusted

by means of a wood bar, a person walking through the water, or even by an

ADV probe moving through. This behavior was discovered during test 1a

(nase) and the jet was adjusted to be right-aligning for all subsequenttests,

including trout.

It was not straightforward to model this alignment correctly, as the CFD

model was likewise sensitive as the physical model. In the physical model

tests (Figure 2.8), the total �ow rate ( Q = QF AA + QDot ) was initially set

to Q = 0 :520 m3=s, after about � t = 180 s increased to0:750 m3=s, and

then after another about � t = 180 s increased to the fullQ = 1 :004 m3=s.1

This was done to allow the test �sh to acclimatize to the �ow velocit y. In the

numerical model, however, the jet was left-aligning when starting with the

full �ow rate and a homogeneous initial velocity of v = 0 :67 m=s (converged

after t = 200 s, Figure 3.5). It was right-aligning when starting with QF AA =

0:200 m3=s and increasingQDot = 0 :400 m3=s to QDot = 0 :600 m3=s after

� t = 20 s (converged aftert = 100 s). To get the correct right alignment, I

took the result of the latter case as an initial condition to the case with full

�ow rate and simulated for an additional � t = 180 s.

Due to �ow separation occurring at the end of the middle wall (con�uence

of �shway and auxiliary �ows), the jet was �uctuating in one simulation ,

leading to small out�ow �uctuations (Figure 3.5). To obtain representat ive

results for comparison, all CFD model results were averaged overt = 20 s

of simulation time until they were visually steady.

3.4.2 Two-dimensionality

A two-dimensional �ow �eld without changes in the vertical would simp lify

model development. To test the ADV results for two-dimensionality, two

horizontal planes of case1e-A at depths z = 40 cm and z = 7 cm are

subtracted from each other. Results reported in Figure 3.6 show that the

velocity magnitude di�erence in wide areas on both sides is below� U =

� 0:15 m=s. Larger di�erences up to � U = 0 :35 m=s occur downstream the

middle wall. In the jet, � U is negative up to � U = � 0:35 m=s. These

numbers are equal to 22 % resp. 52 % of the averagex velocity component,

1The additional four liters were de�ned to improve control of the digit count in ma nual
control input. They are ignored in the following.
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Figure 3.5: In�ow and out�ow of the numerical model with Qin = 1 :0 m3=s over
time. Initialization from a previous case with Qin = 0 :6 m3=s. The �ows converged
after 200 s of simulation time. Note the small, periodic �uctuation in out� ow due
to transient �ow separation at the middle wall.

Figure 3.6: Velocity magnitude di�erence, � U (m/s), of the horizontal planes
located at z = 0 :40 m and z = 0 :07 m above the �ume bottom for scenario 1e,
�long screen with slot�. Flow from left to right. Figure provided by R. Czerny.
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um = 0 :67 m/s. Based on this �nding, the �ow is not fully two-dimensional

and the planes can only partly be treated as equal.

In the upper plane, velocity is higher downstream the middle wall and

lower in the central jet area. As the e�ect is spatially limited, it i s not

caused by bottom friction, but probably by di�erent jet/eddy interac tion

in the vertical dimension. I decided to start the following analyses with the

lower plane at z = 0 :07 m. It is the most relevant to the IBM as �sh spent

most of the test time close to the bottom.

3.4.3 E�ects of horizontal bars and vertical pillars

Full representation of a bar screen in a CFD model requires massivemesh

re�nement which increases computational cost. Empirical formulas andpre-

vious experience at BAW led to the hypothesis that �ow �eld distur bance by

an inclined horizontal screen (atum = 0 :67 m/s) is small and can be ignored.

To test this hypothesis, three CFD simulations are compared: (a) without

horizontal bars, but with vertical pillars for the long screen setup, (b) with-

out horizontal bars, but with vertical pillars for the short screen setup, and

(c) without both bars and pillars. All simulations have a slot present. The

quality of the simulations is expressed as velocity di�erence fromthe time-

averaged ADV probe measurement. I evaluate di�erences� U � 0:10 m/s as

desirable, up to � U � 0:20 m/s as acceptable if limited in area. This equals

15 % resp. 30 % of the averagex velocity component, um = 0 :67 m/s. Higher

di�erences are tolerated in the jet, which is discussed separately.

Results of the simulations and of ADV probe velocity measurements are

reported in Figures 3.7 and 3.8 for the long screen and in Appendices D.1

and D.2 for the short and no-screen setups. For both long and short screen

con�gurations with pillars, in the lower plane at z = 0 :07 m, the di�erences

are smaller than � U = � 0:2 m/s. The only exception is the jet between

x = 0 m and x = 5 m, where the simulation returns considerably higher

values than the ADV measurement (Figure 3.7). In the upper plane atz =

0:40 m the agreement is much better (except for the jet), especially for the

long screen setup (Figure 3.8). Leaving out the screen barsand pillars in

the short screen setup leads to notably worse results, especially in the upper

plane (see Figures D.3c and D.4c).

In the model of the long screen, the water level is correctly represented

upstream of the slot at z = 0 :685 cm, but is 1.4 cm low downstream of the
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Figure 3.7: Top views showing long screen velocity magnitude of (a) the laboratory
measurement (screen of bars and pillars), (b) the CFD simulation (just pillars), and
(c) the di�erence laboratory�simulation. Plane level z = 0 :07 mabove bottom. Main
�ow from left to right, arrows indicate �ow direction at probe location s. Contour
lines every � U = 0 :1 m/s. Note that for (c), di�erences below � U = � 0:1 m/s
have been grayed out and color scale limits have changed.
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Figure 3.8: Top views showing long screen velocity magnitude of (a) the laboratory
measurement (screen of bars and pillars), (b) the CFD simulation (just pillars), and
(c) the di�erence laboratory�simulation. Plane level z = 0 :40 m above bottom. See
Figure 3.7 caption for further details.
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slot at z = 0 :571 cm (x = 0 :80 m). This increases the head drop from� h =

0:10 m to � h = 0 :114 m and hence boosts velocity. An rough estimation

using the corrected Torricelli equation for out�ow through sharp-edged ori-

�ces (Malcherek 2016) yields an excessive� u =
p

g 0:114 m�
p

g 0:10 m =

0:07 m/s, where g = 9 :81 m=s2 is gravitational acceleration.

Possible factors which could explain the observed velocity di�erences are

discussed in the following.

General methodological in�uence factors on the CFD side include turbu-

lence model, mesh, and numerical schemes. On the lab side there are di�er-

ent ADV probe handling, insu�cient seeding, geometrical imperfecti ons, or

varying boundary conditions. However, these factors were controlled for and

executed according to best practice standards. Hence, they cannot beused

to explain the di�erent results.

A part of the velocity di�erence in the jet area can be tracked back to

the simulation water level being too low immediately downstream of the

slot, which increases the head drop. This could be related to the omitted

horizontal bars, but can only partly explain the di�erences.

Another factor is deviation in the jet angle, causing di�erences on both

sides along its way downstream. Flow separation is known to be very sensitive

in CFD modeling. However, detailed modeling of the slot boundary layer

would not contribute to the goal of individual-based modeling, and was not

tested.

Generally, the physical resistance of the screen bars is unexpectedly small.

This is best explained by the inclination of the screen towards the�ow,

which is discussed in the following section. The necessity of representing the

pillars demonstrated in the short screen setup implies that the �ow �elds

of long and short screen setup can not be applied interchangeably, as the

pillar arrangement is di�erent. In summary, even without horizontal b ars the

agreement between simulation and laboratory is su�cient for the purposeof

driving the behavior model, as the observed behavior data contain fuzziness

on a larger scale than hydraulics.

3.4.4 Considerations on physical resistance

Empirical formulas allow to estimate the hydraulic loss at screens, assum-

ing one-dimensional laminar �ow. To my best knowledge, relationships for

horizontal screens, as present here, are not published (no mention in recent
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publications, e.g. Giesecke et al. (2013) and Raynal et al. 2013). Therefore,

the common formulas for vertical screens (e.g. Meusburger 2002, p. 156�)

are adapted for a horizontal screen. The hydraulic loss is computed as

hv = �
v2

2g
(3.1)

where � is the loss coe�cient, v is the undisturbed velocity in main �ow

direction, and g is the gravitational acceleration. � is de�ned as

� = kF k�

�
P

1 � P

� 1:5

(3.2)

using the pro�le form coe�cient kF of Kirschmer (1925), the factor for ver-

tically inclined in�ow k�

k� = sin � (3.3)

where � is the vertical in�ow angle, and the percentage of blocked cross-

section P

P =
Ascreen;proj

Across-section
(3.4)

where Ascreen;proj is the area blocked by the screen, projected to the �ow

direction, and Across-section is the wetted cross-section, perpendicular to the

�ow direction. The horizontal in�ow angle, � , is computed for the screens in

this work as

� = arcsin ( L s=WDot ) (3.5)

where L s is the screen length andWDot is the auxiliary inlet width (sec-

tion section 2.2). v is computed as

v = Q=A = QDot =(WDot � d) (3.6)

where d is the undisturbed upstream water depth.

Application of Equations 3.1�3.6 to the case of the long screen in the

EHF yields

kF = 2 :42
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� := �

k� =
1:72
6:56

� 0:26

P =
12 mm

12 mm + 15 mm
=

4
9

� = 2 :42� 0:26�
�

4
5

� 1:5

� 0:454

v = 0 :800=(1:72� 0:60) = 0:775 m=s

hv = 0 :454�
0:7752

2 � 9:81
� 0:014 m

The pro�le form coe�cient, kF , was chosen for a rectangle-shaped pro�le

Kirschmer (1925). The factor for vertically inclined in�ow, k� , was chosen

in replacement of the factor for horizontally inclined in�ow, k� , to account

for the horizontal orientation of the bars. The horizontal in�ow angle, � , was

taken as the vertical in�ow angle � . For P, the vertical pillars' resistance

was neglected so that bar and gap widths were su�cient for computation.

d was measured.

The downstream water level was �xed at zdown = 0 :60 m in all cases.

Unfortunately, precise undisturbed water level measurements were not avail-

able. Undisturbed measurements upstream of the screen atx = 0 m yielded

mean values of aboutzup = 0 :605 m for the long screen (andzup = 0 :620 m

for the short screen setup).

The resulting theoretical head loss using Bernoulli's equation equals a

velocity di�erence of � v = v1 �
q

v2
1 � 2ghv � 2ghp = 0 :125 m/s, where

pressure head di�erencehp = zup � zdown = 0 :005 m. The real velocity

di�erence downstream of the screen is in that rough order for most areas.

This �nding shows that the formulas are approximations good enough to

allow some basic insight.

Horizontal inhomogeneity (Figure 3.7) can be explained by multiple fac-

tors. First, there are no empirical data on horizontal screens, and dataon

vertical screens are only available for30° � � � 90°. Meusburger (2002,

p. 172) approves of extrapolation within typical practical ranges, which is

admittedly stretched here. Newer results of Raynal et al. (2013) were not

considered, as they are also limited to the same range. Second, �ow is not

fully directed in channel main direction, as presumed in the formulas, but

partly perpendicular to the screen, especially on the right hand side of the
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screen where the �ume width expands. For �ow perpendicular to the screen,

the inclination factor is k� = sin 2 � , which yields a smaller hv (Kirschmer

1925) and thus further reduces physical resistance. This fact could notbe

considered here, as the �ow angle varies over the screen length.

The insight that screen resistance increases with the horizontal angle to

the �ow implies that leaving out the horizontal bars has larger in�uenc e for

a larger angle� . For the short screen,k� = 0 :52, which means the theoretical

head loss is doubled. This could explain the observation that the short screen

simulation shows higher velocity di�erences then the long screen simulation

(Figures 3.8c and D.3c). Still, due to the comparatively low velocity, the

head loss is negligibly small for both long and short screen setups.

3.5 Conclusions

In this chapter, numerical and laboratory hydraulic results of the 2016 EHF

study were presented. Analysis of two �ow �elds with slot in two hor izontal

planes revealed that

ˆ the �ow is not fully two-dimensional in the physical model;

ˆ it is justi�ed to omit the screen horizontal bars for the CFD simula-

tions of both long and short screen setups with respect to the behavior

observation accuracy;

ˆ one of the reasons for the negligible resistance is that the screen is

horizontally inclined towards the �ow. This implies that the long s creen

setup is more accurate than the short screen setup;

ˆ the applied empirical formulas probably over-estimate the head loss as

they do not account for the �ume expansion downstream of the screen;

ˆ it is not justi�ed to omit the vertical pillars (only tested for short

screen setup), which implies that long and short screen setups cannot

be treated as interchangeable.

The investigation was not repeated for the two �ow �elds without slot.

I transferred the above conclusions to them under the assumption that a

simpler �ow �eld in similar geometrical constraints is easier to match. The

�ow �elds without slot are simpler, as they do not exhibit a jet and are way

more homogeneous. The local di�erences observed in the ADV comparison

can be accepted for the purpose of simulating �sh behavior.

For best possible �ow �eld representation, I use the two CFD �ow �e lds
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of the long screen setup with pillars, but without horizontal bars, as input for

ELAM-de. From the four hydraulic parameters considered as stimuli, only

acceleration, j~aj, resembled the horizontal behavior pattern, P(1), for trout.

It will be tested as a stimulus in chapter 5. But before that, the new IBM

needs to get a base to run from: a software framework.
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Software frameworks and

�sh behavior models

In this chapter, the software framework for ELAM-de is developed. In the

�rst section, recently published IBMs for �sh migration at dams are su mma-

rized and the utility of their respective frameworks and behavior models for

this work is evaluated. In the second section, a selected model framework is

upgraded to work with unstructured meshes and OpenFOAM. In the third

section, the new framework is validated.

4.1 Literature review

In this section, recently published individual-based models (IBMs) for �sh

movement at dams are summarized and discussed. As framework and be-

havior model are strongly entangled and are commonly published together,

they are also reviewed together, even though behavior model information is

not relevant until the next chapter. The following questions are addressed:

ˆ Which existing software framework is most suitable to the objectives of

this work, i.e. simulating behavior of upstream migrating �sh in smal l

spatial and temporal scale?

ˆ Are there behavior models suitable to the objectives of this work?

ˆ If not, which behavior model elements can be re-used?

ˆ Which stimuli are relevant to behavior model development?

Upstream migration in �shways and tailraces is considered as well as down-

stream migration in dam forebays.
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Fish behavior modeling has been a growing research �eld for the past

decades, probably due to an increase in computer capacities (Willis 2011)as

well as in ecological awareness. To structure the review, IBMs wereclassi�ed

by length scale, which usually correlates with further relevant behavior and

CFD model features like time scale, �ow �eld detail (e.g., resolved turbu-

lence), and wall treatment detail. It is inevitable that some aspectsof the

work presented do not strictly �t into the simpli�ed scheme, st ill it is helpful

for presentation and discussion. The following classes of �sh movement IBMs

were de�ned:

ˆ Large-scale: Ocean-scale or river system, 1D or 2D, tens of kilometers

to hectometers, days to hours (not considered here).

ˆ Mid-scale: In�uence area of hydraulic structures (� 5 river widths), 2D

or 3D, hectometers to meters, hours to seconds.

ˆ Small-scale: Hydraulic structures ( � 1
2 river width and smaller, 2D or

3D, meters to centimeters, minutes to parts of seconds.

Where possible, I included the purpose of the model, area considered,

spatial and temporal resolutions, software framework, and species. For the

development of a new model, the following information is important: cal-

culation of swim velocity and fatigue, modeling of wall avoidance behavior,

and hydraulic stimuli which trigger behavior.

Figure 4.1 presents a graphic overview for orientation. Results are dis-

cussed in the end of this section.

4.1.1 Mid-scale models

Goodwin et al. (2014) developed a comprehensive ELAM-based IBM (here:

�ELAM-2014�) for downstream migration. It is unique because of its long

development history and the massive amount of data incorporated. Earlier

versions of the model were comprehensively tested, peer-reviewed, and ap-

plied multiple times since the year 2000 (e.g. Goodwin 2004; Goodwin et

al. 2006). ELAM-2014 used downstream passage route data of juvenile sal-

monids in 47 �ow �elds from seven Columbia and Snake river dams. The

Columbia�Snake river system in the Paci�c Northwest of the United State s

is the best-investigated river system in the world with respectto downstream

�sh migration. Extensive �eld research using tagged �sh has been performed

as early as 1971 (Bickford and Skalski 2000). Large �shways, often more

than one, have been installed from the start at all eight lower Columbiaand
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Goodwin et al. (2014) 

Gao et al. (2016) 
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Downstream 

Zielinski et al. (2015) 

Smith et al. (2012) 

Abdelaziz (2013) 

Haefner and Bowen (2002) 

Model length scale (log) 

Target scales (this work) 

Figure 4.1: Length scales covered by the �sh behavior models reviewed.

Snake river dams since construction in 1938 (BPA 1939). The popular �Ice

Harbor� type �shway was developed there and the impressive number of

about US $11 billion was invested alone in the years from 1985 to 2010 for

nature protection purposes (BPA 2010). The number of �sh annually tagged

with Passive Integrated Transponder (PIT) tags was about two million in

2010 (McMichael et al. 2010), which does not include active radio tags and

active acoustic tags.

CFD codes applied for ELAM-2014 were U2RANS and Fluent. The 3D

models of the forebays covered widths between approx. 0.5�2.2 km and

lengths of approx. 1 km using block-structured grids. This allowed to use

the concept of contravariant space, which enables rapid spatial computa-

tions. The behavior model comprised four behavior rules with a maintime

step � t = 2 s. They can be summarized as:

ˆ Behavior{1} (B{1}): Downstream migration in �ow direction was the

default behavior and worked as a biased correlated random walk (BCRW).
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Random deviations of the horizontal angle were bound by� 20° and

deviations of the vertical angle were bound by� 10°. Swimming speed

was bound between 0.25�2.0 BL/s (Body lengths per second).

ˆ B{2}: Attraction to higher velocity, with the goal to reduce experienc ed

acceleration and to avoid obstacles. Angles were bound as for B{1}. If

acceleration was not decreasing over a couple of time steps, swimming

speed was increased up to 10.0 BL/s.

ˆ B{3}: Blenching from increasing acceleration and swimming back against

the �ow. The angles allowed were getting smaller with increasing ac-

celeration. Swimming speed was bound as in B{2}.

ˆ B{4}: Limiting vertical movement resulting from the preceding beh av-

iors to a certain vertical distance, equivalent to a speci�ed (hydrostatic)

pressure di�erence.

Individuals were able to acclimatize to changed environment parameters

over time via memory coe�cients. The probability for a behavior was calcu-

lated from a moving average of Boolean events. Subjective time perception

in quickly changing conditions was represented as �event time� by updat-

ing behavior probability in sub-time-steps. The behavior with t he highest

expected utility was chosen. In case of a wall collision, the individual was

set back to a position at 25 % of the boundary cell length, but only in

the violated dimension(s). Energy consumption or swimming cost werenot

modeled.

500 individuals were released per simulation at the upstream boundary.

The averaged RMSE (root-mean-square error) of passage route percentages

between simulation and �eld data was 8.9 %. R.A. Goodwin liberally pro-

vided the Fortran 90 code used in Goodwin et al. (2014), which is gratefully

acknowledged.

Smith et al. (2012) presented an ELAM model for 2D upstream migra-

tion of sturgeon in the Mississippi river. The dam considered was 894 m wide

in total, and the 2D hydraulic model (USACE ADH 2D code) extended

downstream up to a distance of approx. 7.5 km using a structured grid.

500 individuals were simulated using a time step� t = 2 :0 s. Swim speeds

and fatigue times were estimated from literature and previous ELAM appli-

cations. Swim speed was arbitrarily increased by approx. 40 % to represent
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the assumption that sturgeon preferred bottom proximity and experienced

lower velocities than calculated by the CFD model. By default, individuals

moved upstream with a speed of approx. 1 BL/s. Acceleration was used as a

stimulus to in�uence the swimming direction. To account for the upstream

migration direction, behaviors B{2,3} as in Goodwin et al. (2014, see above)

were reversed to preferdecreasingvelocities resp. to swim backwith the �ow.

The model was calibrated to match passage rates from a study of 362 acous-

tically tagged �sh, of which approx. 60 % moved from the tailwater into th e

forebay over the course of four years. A preliminary �nding of the model

was that passage was correlated with di�erence in acceleration between a

planned �shway entrance and the bulk �ow.

Zielinski et al. (2015) modeled a dam forebay and tailrace in 3D using

ANSYS Fluent software to evaluate upstream passage rates of invasive Asian

carp. Dimensions of the model were approx.370 m� 650 m (Zielinski, 2016,

pers. comm.). The unstructured mesh consisted of up to 10 million cells with

edge lengths ranging from 0.25�1.50 m. A qualitative validation with ADCP

data was performed. The behavior model utilized measured speed�fatigue

curves of Asian carp. Individuals were forced to swim upstream and chose

the direction with minimum expected fatigue, i.e. lowest velocity. Excessive

velocities led to exhaustion and the individual was removed from the sim-

ulation. Field passage data were lacking so no direct validation could be

performed.

Arenas Amado (2012) distinguished between dynamic and kinematic

IBMs for �sh. His dynamic behavior model calculated thrust and drag on the

�sh by solving Newton's second law,F = ma. It was implemented through

user-de�ned functions in the software Fluent. Fluent was also used to develop

CFD models of two dam forebays, which spanned an area of approx. 560 m

in width and more than 1000 m in length. Structured meshes consisting of

about 1 million nodes were generated in GRIDGEN 15.15. Four steady �ow

�elds were modeled by averaging �selected consecutive days�, no additional

details given. Up to 24 000individuals (juvenile salmon) were released into

the model and compared with �eld data for passage route choices. Field data

embraced 662 trajectories from approx.3000 �sh tagged for the �rst dam

and passage route percentages for both dams.

Two behaviors, sustained and swim burst mode, were de�ned, and were

mainly triggered by �ow acceleration and pressure thresholds. The behav-
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ior model decided through a probability distribution if the �sh was k icking

or gliding, a behavior pattern supposed to save energy. The modeled �sh

�knew� about the distance to any kind of obstacle if wall distance dropped

below 15 BL, and after undershooting 5 BL it changed its direction to an

angle orthogonal to the surface and switched to burst mode. Memory was

not incorporated in the model. Resulting passage route prediction error was

approx. 17 %.

4.1.2 Small-scale models

Abdelaziz (2013)described two models to simulate upstream �sh passage in

culverts and �shways, resp., of a few meters in size. The case studies' numer-

ical modeling was performed in 2D using the Surface-water ModelingSystem

(SMS) and Flow-3D software1 in 2D mode. Resolutions of the rectangular

grid were 0.05 m� 0.05 m and 0.01 m� 0.01 m, resp. Time step� t was

not reported.

The �rst model (2D) forced continuous forward progression by selecting

one of three grid points in front of the individual, based on low velocity

and calibrated probabilities. The velocity gradient was taken as a directly

correlated indicator for turbulence. Energy cost was included by highly em-

pirical formulae based on Blank (2008). Species considered were cutthroat

and rainbow trout. 100 simulated �sh paths were compared with 3 paths

observed by Blank (2008).

The second model (3D) was an expansion of the �rst model towards the

vertical axis. If the vertical velocity gradient exceeded a threshold, a vertical

component pointing against the �ow vector was added to the movement

vector. Values for a �Normalized Error� of positions in a 2D plane were

stated, but the term is ambiguous and no de�nition was given. Therefore,

the values are not considered in this review.

Gao et al. (2016) applied the ELAM to two individually upstream mi-

grating trout ( BL � 0.2 m) in a vertical slot �shway. They computed a 2D

steady-state �ow �eld for eleven pools using ANSYS Fluent software and an

unstructured mesh of77 926cells covering an area of approx. 21.0 m� 1.5 m.

Like in Arenas Amado (2012), Fluent user-de�ned functions were used to im-

1The software used is not documented in the text, but the resulting images' desi gn,
references to the �RNG turbulence model�, and the turbulent mixing length parameter
(TLEN) are typical for Flow-3D.
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plement the behavior model. Four possible stimuli for the behavior model

were considered initially: velocity vectors, turbulence kinetic energy (TKE),

turbulence eddy dissipation, and strain rate. Numerical results were tested

qualitatively against two �sh tracks observed in a lab and TKE was found

to be the best stimulus for movement. The behavior model used a sensory

ovoid similar to the one described in Goodwin et al. (2006). Swim direction

was de�ned by the preferred TKE value, which was de�ned to be between

0.1�0:3 J=kg and upstream cells were preferred over downstream cells. A

constant velocity over ground of 1 m=s was predetermined as a �rough es-

timate�. The authors concluded that measured trajectories were �faithfully

reproduced�.

Haefner and Bowen (2002)describe an IBM developed for predicting the

salvage e�ciency of a �sh collection facility in California, USA. Six spec ies

were considered by adjusting their preferred swim speeds and directions. The

individuals were moving in a channel of 2.4 m width� 19.0 m length which

was blocked by louvers (bar screens). Movement behavior and CFD were

modeled in structured 2D using the NaSt3DGP package. In addition to the

established sustained, prolonged, and burst swim modes (Beamish 1978),

a reversing swim mode was introduced. Sustained mode was the default

mode, and close to boundaries the mode switched to prolonged or burst

swimming. The model was dynamic as it considered friction and pro�le drag

on the individual and calculated forces. Fish movement directions depended

on the migration direction of each species and were aligned either with or

against the �ow. Energy cost was incorporated through a time limit for

burst mode swimming between 0�6 s. 500 individuals were simulated ten

times using random energy levels and starting positions. Comparison with

observed e�ciencies showed good agreement for four of six species.

4.1.3 Discussion

For developing a new IBM for upstream migrating �sh in the small spatial

and temporal scales of a �shway, both a �tting framework and behavior

model are required.

Despite frameworks being suited for reuse per de�nition, every IBM re-

viewed (except Smith et al. 2012) used a di�erent one. This impedes transfer

and exchange between the IBMs and creates duplicate work, as criticized by
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Grimm and Railsback (2005, p. 271). I choose an existing framework to

bene�t from earlier work.

The framework of ELAM-2014 (Goodwin et al. 2014) is chosen as a de-

velopment basis because it has been validated with the largest data setby

far, has been published and peer reviewed multiple times, and is not bound

to proprietary licenses. However, the ELAM-2014 framework is tailored to

mid-scale downstream migration in forebays. Its use of structured meshes

makes it un�exible in recreating small-scale geometries. This feature is par-

ticularly necessary in �shways which the present work aims for. Therefore,

the framework needs to be upgraded to work with unstructured meshes, as

used by the CFD software package OpenFOAM (section 3.1). OpenFOAM

is chosen for compatibility to existing and future CFD models at BAW .

Development of a new behavior model from scratch is required because all

behavior models reviewed lack one ore several features important to the ob-

jectives. The downstream migrating behavior model of ELAM-2014 does not

account for swimming cost (e.g. energy, fatigue) which could be important

for modeling upstream swimming against the �ow. In addition, it assumes

constant swimming, i.e. no holding behavior, which could be unsuitable for

smaller scale applications (appendix E). The downstream model of Arenas

Amado (2012) allows for holding. However, it partly prevents behavior emer-

gence by using probability distributions, which limits its generality. It is vali-

dated for two cases, but bound to proprietary Fluent software. The Zielinski

et al. (2015) model deals with upstream migration, but lacks the ability

to simulate multiple entry attempts, direct validation, and docum entation.

The 2D CFD model of Smith et al. (2012) is unable to capture hydraulic

3D e�ects of hydraulic structures and the associated behavior modelis not

validated. Of the small-scale IBMs of Haefner and Bowen (2002), Abdelaziz

(2013), and Gao et al. (2016), only the �rst one is validated comprehen-

sively, but the authors state it needs additional testing. Taking the velocity

gradient as a directly correlated indicator for turbulence (Abdelaziz 2013)

is a strong over-simpli�cation to my understanding. The models are highly

tailored to the respective hydraulic structures and are probably di�cult to

extend to a tailrace in future work, which is important to approach �sh way

attraction.

Some behavior model elements can be incorporated or at least investi-

gated in a new model. Gao et al. (2016) gives the indication to investigate
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TKE as primary stimulus. To my understanding, the qualitative assessment

performed in the study is prone to be arbitrary, and also �ow directi on could

have been chosen as a stimulus. Acceleration and a pressure proxy (Goodwin

et al. 2014; Smith et al. 2012) are promising stimuli as well as low velocity

attraction (Abdelaziz 2013; Zielinski et al. 2015).

Swim speed was selected to be �xed at approx. 1 BL/s (Smith et al.

2012) and 1 m/s (Gao et al. 2016). Goodwin et al. (2014) used �xed rates of

0.25 BL/s, 2 BL/s, 6 BL/s, and 10 BL/s for downstream drifting, cruising,

sustained, and burst swimming, respectively (their BL = 0.09 m). The dy-

namic models of Arenas Amado (2012) and Haefner and Bowen (2002) using

Newton's second law are more physically founded, but this level of detail is

not required here. Therefore, a �xed swim speed in the order of magnitude

2�4 BL/s can be used.

Wall avoidance was treated di�erently, but always arti�cial. Arenas Amad o

(2012) changed the swim direction to be orthogonal to the wall. Goodwin

et al. (2014) reset the �sh. Mortensen (2012) forced them to return to mid-

stream. A new approach is needed for small-scale movement close to walls.

4.1.4 Conclusions

This section reviewed recent work in �sh behavior modeling for upstream

movement close to hydraulic structures both in nature and laboratory scale.

There are some �ndings for model development.

ˆ The ELAM-2014 framework was con�rmed as the most suitable soft-

ware framework to start development. It is comprehensively validated,

extensively documented, peer-reviewed, and not bound to proprietary

licenses. It needs expansion to work with unstructured meshes and

with OpenFOAM output.

ˆ Development of a new behavior model was shown to be necessary, as

the existing models either operate on larger scales, deal with down-

stream migration, arti�cially enforce upstream directed movement,

and/or do not allow repetition after failed trials. The necessary work

is described in chapter 5.

ˆ Diverse hydraulic stimuli were used in IBMs without clear results.

Thus, testing is required. In addition to the parameters found in litera-
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ture on behavior observations, 3D velocity (U) and turbulence kinetic

energy (TKE) (section 2.1.4), I selected the acceleration magnitude

(j~aj) and pressure (p) for testing in chapter 5.

4.2 New framework

Following the conclusion from the previous section, the framework of ELAM-

2014 is upgraded to work with OpenFOAM (section 3.1) and with unstruc-

tured meshes instead of structured meshes (section 3.2). The new framework

is part of the new IBM ELAM-de.

4.2.1 Program organization

The program organization of ELAM-de is based on ELAM-2014. The most

important functional di�erence is the new ability to work with unst ructured

polyhedral CFD meshes. All interactions of the framework with the mesh in

contravariant space, i.e. all spatial functions, have to be replaced by func-

tions working in Cartesian space. Most of them are already contained in the

OpenFOAM toolbox.

The model code was split to several �les to enable reuse and to ease

compilation. Figure 4.2 shows their dependencies in an uni�ed modeling

language (UML) diagram. The individual purposes and interfaces are:

ˆ ELAM-de.cpp � Main �le. Manages input, calls functions, executes

time and �sh number loops, stores variable arrays.

ˆ BehaviorRule.f90 � Behavior model, receives hydraulic and behav-

ioral input and provides swim vector for the next time step. Vector

calculations are done invectorRelation.f90, which was taken unmodi-

�ed from ELAM-2014. The same is true for random.f90, which gener-

ates pseudo-random numbers from a de�ned seed value.

ˆ sensoryPointCreate.cpp� Creates (x,y,z)�coordinates for all sensory

points of a given �sh center with respect to the direction the �sh i s

facing. I translated the code to C++ but did not change the algorithm.

ˆ hydroInterpolation.cpp � Interpolates CFD �eld data from OpenFOAM

to arbitrary cartesian coordinates, e.g. the �sh location and all sur-

rounding sensory points. Checks for boundary collisions. Upon hit,
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returns patch type, number, and hitPoint coordinates if required. Pro-

vides fast-track functions which only check if a hit is detected, not

where. Detects and resets out-of-bounds sensory points.

ˆ updateFishLocation.cpp� Updates �sh position according to only the

�ow vector (passive particle) or combined with the swim vector (ac-

tive). Checks and corrects out-of-bounds positions, internal wall cross-

ings, and notes normal exit or resets position, if necessary. Skips (and

transfers position to next time step) if a �sh has left the domain.

ˆ writeOutput.f90 � Writes �sh movement data into Tecplot readable

format. Most of the ELAM-2014 output data is omitted through com-

ments because it is not used in ELAM-de.

Requirements for the programming language of the main �le were

ˆ the degree of compatibility with C++ (OpenFOAM) and Fortran (ELAM-

2014),

ˆ speed of interaction with these languages,

ˆ a decent amount of popularity to

� guarantee the existence of learning literature including Internet

entries,

� implicate a high chance of long term view popularity (10�20 years)

to ensure knowledge and hardware are available to future users,

ˆ independence from commercial licenses to simplify portability and fu-

ture use,

ˆ and simplicity to speed up implementation and readability.

I chose C++ because it satis�es all requirements except simplicity.

I kept the behavior model formulation in the function 1 BehaviorRule

and in the original Fortran 90 language allowing stand-alone development,

exchange of di�erent rule sets, preserving large compatibility to the prior

versions, and avoiding re-implementation of tested code. BehaviorRule is

called from the main �le via a C wrapper function. The interface consists

of 47 arguments (section B.3), e.g.fishNumber or fishSensoryVelocity ,

which are processed in and returned by the function.

Language versions were Fortran 90 (ISO/IEC 1539:1991, with �xed for-

mat in FORTRAN 77 style, Chapman 2004) and C++11 (ISO/IEC 14882:2011)

1 �Functions� in C++ are mostly equivalent to �Subroutines� in Fortran.
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compiled and linked with the Intel Compiler 14.0.2 for Fortran and C++

(compatible to GNU compiler 4.4.7) on CentOS 6.6 64-bit. The Make�le

developed including all necessary include paths, library paths andlibraries

as well as compiler �ags is documented in appendix B together with devel-

opment notes on the compatibility between Fortran and C++.

4.2.2 Faulty checks for mesh insideness

The routine shipped with OpenFOAM 2.3.1 to check whether a given point is

inside the mesh,polyMesh::findCell , has some �aws which occurred dur-

ing model development. Often a certain location which was clearly inside the

mesh boundaries was not detected as such and treated as being outside. Ex-

ample points in the mesh described in section 3.3 wereP1 = (10.61 0.20 0.07)

and P2 = (11.00 0.20 0.07).

I assume that the cause for this issue lies in the way the polynomial

faces forming the cells are split into triangles for computation. This hy-

pothesis is supported by OpenFOAM's recommendation never to place the

locationInMesh point of the mesh generator snappyHexMesh exactly on a

face. According to code comments (github.com 2015a,b), related issues were

resolved in OpenFOAM 3.0.1. However, the fact that the recommendation is

still valid in version 4.1.0 (github.com 2016) suggests that the speci�c issue

still exists.

To overcome the issue for version 2.3.1, the only safe way was to perform

a check for mesh insideness each time a new position was determined. This

approach highly increased computational cost and should be addressed in

future work.

4.2.3 Calculating acceleration magnitude

Flow �eld acceleration is a stimulus used by many �sh models (section 4.1).

Its calculation in OpenFOAM is developed in this section.

In Eulerian description, the three-dimensional acceleration �eld a results

from applying the Lagrangian derivative1 on a velocity vector �eld U :

a =
DU
Dt

=
@U
@t

+ u
@U
@x

+ v
@U
@y

+ w
@U
@z

(4.1)

1Other terms common include material , total , or substantial derivative. I chose La-
grangian derivative, as it directly refers towards the concept used in its derivation.
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For a steady-state velocity �eld the temporal acceleration term drops out,

and the equation for advective acceleration1 remains:

a = u
@U
@x

+ v
@U
@y

+ w
@U
@z

(4.2)

It is commonly written more compact in full vector notation as

a = U � r U (4.3)

wherer is the Nabla operator, andr U = grad U denotes the gradient �eld

of the velocity vector �eld U . To calculate acceleration from OpenFOAM

output, I wrote the tool acclMag (source code in Appendix B). Due to the

missing transpose signs in Equation 4.3, special care was necessary to ensure

the right order and results, as described in the following.

A gradient �eld of a vector �eld is mathematically described by a tensor

of second rank, which is represented inR3 through a 3 � 3 matrix. This

gradient matrix (or, transposed Jacobian matrix) is computed as dyadic

product

r U = r 
 U = r � U T

=

0

B
B
B
B
B
B
@

@
@x

@
@y

@
@z

1

C
C
C
C
C
C
A

�

u v w

�
=

0

B
B
B
B
B
B
@

@u
@x

@v
@x

@w
@x

@u
@y

@v
@y

@w
@y

@u
@z

@v
@z

@w
@z

1

C
C
C
C
C
C
A

(4.4)

Untransposed vectors are de�ned to be ordered column-wise and transposed

vectors are de�ned to be ordered row-wise.
1Advective and convective acceleration (and transport ) are often used interchangeable

in hydraulics. I chose advection as it is more precise, denoting passive transport of �ow
quantities (or particles) through large-scale motions of the �ow, wherea s convection de-
scribes directed transport caused by any source, be it advection, di�usion, dispersion, or a
temperature gradient etc. For further clarity: Di�usion is the omnipresent, i sotropic mix-
ture caused by random molecular motions (Brownian motion). Dispersion is a nisotropic
mixture through advection. Dissipation is a general term for energy converting processes.
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Using the gradient matrix, Equation 4.3 can be written as

a =

0

B
B
B
B
B
B
@

�

u v w

�

0
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B
B
B
B
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@
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@x
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@x

@w
@x
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C
C
C
C
C
C
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1

C
C
C
C
C
C
A

T

(4.5)

Now the missing transpose signs can easily be added to Equation 4.3.

a = ( U T � r U )T (4.6)

Now that the order is proven to be correct, the vector �eld a is summa-

rized into a scalar �eld and drops the outer transpose sign by applying the

magnitude function to Equation 4.6:

jaj =
q

a2
x + a2

y + a2
z = jU T � r U j (4.7)

Equation 4.7 is easily represented in OpenFOAM by the code

1 acclMag = mag(U & fvc :: grad (U))

In the OpenFOAM framework, there is no command to de�ne a vector's

orientation in row or column, as the underlying storage arrays are identi-

cal. Still, the order is important, as demonstrated by switching the above

computation to fvc::grad(U) & U , which gives a di�ering result, but no er-

ror. (For tensors of rank > 1, however, a transposition command is needed

and available.) The de�nition of the gradient command fvc::grad(U) in

OpenFOAM as described in OpenCFD Limited (2014) is consistent with

the explanations above. For further details about derivations of the 3D ac-

celeration �eld see Munson et al. (2013, p. 166�).

The results depend on the numerical discretization scheme (gradScheme)

chosen in thefvSchemes�le, which is needed for computation of the spatial

derivatives. For the standard Finite Volume Gaussintegration scheme, three

di�erent interpolation schemes were tested:linear, cubic, and midPoint . Fur-

ther, the included schemescellMDLimited-GaussLinear1 and leastSquares

were tested. Testing with a conventional upwind scheme was not possible

due to implementation idiosyncrasies of OpenFOAM 2.3.1. The total of �ve

resulting �elds (Figure 4.3) are very similar to each other, with slightly in-
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Figure 4.3: Acceleration magnitude of a velocity �eld (from section 4.3) computed
using �ve di�erent numerical gradient schemes.

creased maximum values forGauss cubicand slightly decreased minimum

values for cellMDLimited-GaussLinear1 schemes. Eventually, I chose the

Gauss linear scheme, equivalent to central di�erencing, for further use, as it

is recommended for most cases (OpenCFD Limited 2014, p. U-117).

The postprocessing software ParaView allows to compute spatial deriva-

tives (i.e., a gradient �eld) through the �lter ComputeDerivatives. There are

small di�erences in the results compared to OpenFOAM, possibly due to the

schemes used. However, I decided to stick to OpenFOAM's computation, as

the implementation is more transparent and it is integrated in the work�ow.

4.3 New framework validation

To demonstrate that the framework code changes from ELAM-2014 to ELAM-

de are free of programming errors, the old and new frameworks must produce

identical results using the same ELAM-2014 behavior model and identical

OpenFOAM CFD input. It is tested in this section by de�ning a tes t case

for �sh downstream migration, consisting of a CFD model with a quasi-

structured mesh and a behavior model.
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4.3.1 Test case CFD model

The 3D CFD model domain was a box with dimensions20 m� 20 m� 3 m

�lled with water (1 phase, no air). It resembled the forebay of a hydropower

dam with the outlets being a turbine intake and a small bypass (Figure4.4).

A constant velocity of 1:0 m
s was set at the inlet, equal to a total �ow

rate of 60:0 m3

s . A large and small outlet were placed asymmetrically on

the opposite side to produce an asymmetrical �ow �eld. An obstacle was

placed at the center to increase �ow acceleration. The obstacle consisted of

a porous medium, de�ned using the OpenFOAM formulation of the Darcy-

Forchheimer law. The coe�cients were chosen arbitrarily, with t he only goal

of creating a high resistance, tod = 1 � 1010 1
m2 and f = 0 1

m2 . Using a

porous medium instead of solid walls released me from the need to splitthe

domain into blocks. The top was modeled as a smooth wall, orrigid lid .

Single-phase �ow, downstream directed migration, and the structured mesh

consisting of 9600 hexahedra (� x = � y = � z = 0 :5 m) were all chosen

for compatibility with ELAM-2014. I chose the interFoam solver and RANS

turbulence modeling with the k � ! � SST model (section 3.1).

20 m

20
m60 m³/s 55.7 m³/s

4.3 m³/s

inlet

walls
obstacle

1.0 x 5.0 m 6
m

10
m

1
1
2

walls

outlets

Figure 4.4: Top view of the test case 3D CFD model geometry, mesh, boundary
conditions, and resulting out�ows. The origin is located in the bottom left corner
of the model.
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4.3.2 Test case behavior model

The ELAM-2014 behavior model parameter set used here was calibrated to

the Lower Granite Dam forebay on the Lower Snake River, Washington,

USA, which is 30.5 m in height and 975 m in width (appendix of Goodwin

et al. 2014, pp. 20, 34). It was necessary to change the thresholds listed in

Table 4.1 to elicit all �sh behaviors in the smaller CFD model used here.

In the ELAM-2014 framework, a boundary violation can be treated easily

in contravariant space. If a �sh or sensory point is outside the domain, it is

reset to 1
4 of the cell length in the respective dimension. This behavior was

reproduced for this test case in the ELAM-de framework by resettingthe

�sh to 1
4 of the respective dimension of the movement vector between old

�sh position and wall hit point. The side walls, longitudinal walls, and ai r

were appropriately separated.

Three �sh were arbitrarily positioned close to the inlet (left hand side)

in two di�erent depths (Table 4.2).

The drawback of ELAM-2014, which requires to split the domain into

multiple blocks for multiple exits, could be ignored for the comparison, as

all �sh were guided by the �ow and did not try to move through the walls

on the right hand side. Therefore, the simpli�cation of de�ning the w hole

right hand side including the walls as one single exit was justi�ed.

Table 4.1: Threshold values changed for compatibility check.

Lower Granite This work

Utility for behavior B{2} 0.5 0.275
Acceleration threshold, B{2} 0.8373 0.1
Acceleration threshold, B{3} 0.89 0.15

Table 4.2: Fish positions (in m) for the test case in ELAM-2014 as de�ned in the
input �le fishPositions.inp .

�shNumber x y Surface distance

1 0.01 5 �0.9
2 0.01 10 �2.4
3 0.01 18 �0.9
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4.3.3 Data conversion

To enable the ELAM-2014 code to read OpenFOAM results, the latter had

to be converted to a suitable binary format. First, ParaView 4.3.1 was used

to write �eld data for selected variables at the mesh points to a .CSV �le

(comma-separated value). Precision was 5 places andField Association was

Points. Next, LibreO�ce Calc was applied to sort and streamline the data

and to output them as a new .CSV �le. The variables considered werex; y; z

for 3D position, u; v; w for 3D �ow velocity, p for pressure, k for turbu-

lence kinetic energy, acclMag for advective acceleration magnitude, and

STRXYZUVW for total hydraulic strain as de�ned in Goodwin et al. (2006).

The listing below shows example lines.

1 x ,y ,z ,u ,v ,w ,p ,k ,acclMag ,STRXYZUVW , unused

2 0.00 ,0.00 ,0.00 ,0.17 ,0.00 ,0.00 ,28369 ,1.00640 ,0.01495 ,0

3 0.50 ,0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,28767 ,0.00786 ,0.00000 ,0

4 1.00 ,0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,28748 ,0.00527 ,0.00000 ,0

6160 4.00 ,13.5 ,1.50 ,0.50 , -0.02 ,0.01 ,15238 ,0.72136 ,0.0024 9 ,0

Data were transformed to Tecplot block-structured format using the

MATLAB script ODStoTEC.m, resulting in the �le griddata.dat . Bound-

ary de�nitions were stored in the �le connect.asc . The whole right face of

the block had to be de�ned as an exit route, despite the wall parts, due to

ELAM-2014 model limitations. Both �les were transformed by the Fortran

tool CFDtoHydto produce the binary �le zone1.hyd. CFDtoHydwas compiled

from the provided �le NFS_CFDfromASCII_to_Binary_FLUENT.f(Goodwin,

2015, pers. comm.). Finally,zone1.hyd and SimSettings.inp were fed into

the ELAM-2014 executable.

For the ELAM-de framework, data preparation as described above was

not necessary, as the code was able to directly access the variable �elds

written by OpenFOAM. Note that the �sh z coordinate in the input �le

fishPositions was written in absolute coordinates, with the z axis pointing

against gravity. This was in contrast to ELAM-2014, where it was relative

to the water surface. Other input values were identical to the ELAM-2014

test run.
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4.3.4 Results and discussion

The ELAM-2014 model took 51 time steps equivalent tot = 25.5 s simulated

time to complete, i.e. until the last �sh had left the domain through t he out-

lets. In the ELAM-de framework, �sh #3 needed one additional time step

to leave the domain. In both frameworks, the tracks showed directeddown-

stream migration, i.e. towards �ow direction and with avoidance of extreme

low and high velocity zones. Some sudden orientation changes observed in

the data were probably caused by calibration values not �tted to the current

test case. As I conducted a relative comparison between two cases withthe

goal of obtaining equal results, calibration did not matter here. The result-

ing tracks from the ELAM-de framework (Figure 4.5a) agree visually perfect

with the tracks from ELAM-2014 (Figure 4.5b).

(a) ELAM-2014 (b) ELAM-de

Figure 4.5: Top view of the two test case models showing �sh positions (vector
bases) at all time steps and intended swimming direction and speed (vectors) for
the subsequent time step for three �sh. Flow direction is from left to right, and
the �lling color denote water velocity, Um , in the middle of the 3 m deep water
column. White isolines show threshold acceleration magnitude valuesof 0:10 m=s2

and 0:15 m=s2, respectively.

Quantitative comparison shows slight deviations in the order of decime-

ters starting at time step 23 for �sh #2 ( x direction) and at time step 6 for

�sh #3 ( z direction) (Figure 4.6). The reason are subtle di�erences in �ow

�eld processing between the two codes: ELAM-2014 transfers structured 3D

data to contravariant space to perform faster spatial calculations (Goodwin

et al. 2006), while the ELAM-de framework relies on interpolation schemes
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Figure 4.6: Fish position deviation between ELAM-de and ELAM-2014 frame-
works over time, separated by dimension. The same behavior model wasused. Sub-
�gures (a), (b), (c) are �sh #1, #2, #3, respectively.

(second-order chosen here) for this task. These two approaches lead toco-

ordinate, velocity, and angle di�erences in the order of 1E-6 per timestep.

Depending on the way of the �sh through the �ow �eld, the di�erence s are ei-

ther never noticed (�sh #1), or they add up and, through indirect in�u ence,

lead to the di�erences observed.

For example, in the case of �sh #2, at time step 23 (simulation time

t = 11.5 s), the value for velocity attraction is slightly di�erent at se nsory

points SP(2) and SP(3) between the frameworks. SP(2) is in front of the �sh

and SP(3) is behind of the �sh. Because the value order is reversed between

the two frameworks (Table 4.3), a di�erent sensory point is chosen and a
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di�erent algorithm is selected for computing the swim angle, leading to a

strongly di�ering result for this time step.

Table 4.3: Values of dependent variables at time t = 11.5 s for �sh #2.

ELAM-2014 ELAM-de framework

Value SP2 0.6418012 0.637851773570203
Value SP3 0.6399524 0.638814310213844
Chosen SP 3 2
Swim angle 176.3296 -12.1202105188246

SP, sensory point.

The tiny deviations and their few large e�ects are only relevant for direct

numerical comparisons as performed here. For the following work they are

not relevant, as the same interpolation scheme is always used in a consistent

manner. The results of this test case show that the ELAM-de framework

works in the OpenFOAM environment as expected, has no remaining bugs,

and can be used to run a new behavior model, as developed in the following

chapter.
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New behavior model for

trout in a �ume

In this chapter, a new behavior model for upstream migration of trout in

a �ume is developed and applied using behavior data, CFD data, and the

software framework from chapters 2 � 4. In sum, all parts form the new IBM

called ELAM-de.

Several steps are scheduled for this task and described in the four sections

of this chapter. First, test methods and a metric for model evaluation are

designed. Second, the new behavior model is developed from fundamental

considerations and literature information. Third, the implemented model is

run and tested repeatedly. Fourth, results and structure of the �nal model

are analyzed and discussed.

5.1 Test methods

5.1.1 Procedure

The behavior model is developed and tested following the three elements of

pattern-oriented modeling suggested by Grimm and Railsback (2012): Model

structure, model selection, model calibration. Model validation and software

veri�cation are addressed subsequently.

ˆ The model structure is developed by using literature information and

the trial-and-error method. As the process is highly iterative, only

the result is described (section 5.2). Parameter values are estimated.

Quality is ensured by means of hydraulic data and behavior patterns
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from the �ow �eld with slot (setup 1e-A) from the EHF (chapters 2

and 3). These structure tests are limited to the four spatial patterns

P(1�4) for speed and simplicity.

ˆ Model selection is performed subsequently. Di�erent submodels are

contrasted to qualitatively test alternative movement hypotheses and

to ensure that the model is as lean as possible (section 5.3.1). In addi-

tion, sensitivity to initial conditions is examined (section 5.3.2).

ˆ Model calibration adds the temporal and success patterns, P(5�6), to

the testing scheme (section 5.3.3). Thus, more information is incorpo-

rated into the model. Still, the structure remains unchanged. Change is

only made to the parameter values.n = 15 parameters are calibrated

in a study using Latin hypercube sampling (n = 500) in the �ow �eld

with slot. The quality metric used before is replaced by more detailed

per-pattern limits as it is too coarse for quantitative calibration. Th is

approach requires more analysis, but is also more precise. The result

are three parameter sets for the �ow �eld with slot.

ˆ Finally, the three best parameter sets are validated against P(1�6) from

the �ow �eld without slot (setup 2c-A), which is more homogeneous.

This step completes model development (section 5.3.4).

ˆ Software veri�cation is performed continuously following every model

change to ensure results are based solely on the intended behavior rules

and not on e.g. faulty vector arithmetics.

The test methods are described in the remainder of this section.

5.1.2 Metric for model quality

A good comparative metric needs to balance meaning versus comprehensi-

bility. To evaluate the behavior model structure, detailed information is less

important than quick comparison. With respect to this a metric, or cu rrency,

is de�ned. It is termed overall pattern deviation (OPD), and summarizes per-

centage value di�erences of the four spatial patterns, P(1�4). Both laboratory

and simulation percentage values are obtained using the pattern de�nitions

developed in chapter 2. OPD is computed as

OPD =
1

Nval

N valX

i =1

jPi;sim � Pi;lab j (5.1)
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where Nval = 10 is the total number of percentage values andi is the pat-

tern/percentage value iterator. P(1�3) contain three values each, e.g. for the

right, middle, and left zone. P(4) is represented by a scalar. OPD range is

from 0�100 percentage points, where lower values indicate better agreement.

An arbitrary limit of OPD � 10 percentage points is de�ned as acceptable

deviation.

The percentage-based de�nition enables direct combination of all pattern

values. However, the averaged values are not quite equivalent, because per-

centage values are limited in range by de�nition. For example, a reference

value of 40 % limits the di�erence magnitude to 60 % (|100 % � 40 %|).

For a reference value of 90 %, however, the di�erence magnitude can reach

up to 90 % (|0 % � 90 %|). Thus, the maximum di�erence magnitude of

any compared value depends on the (arbitrary) reference value, whichcan

render the equally weighted mean forming OPD unequal. I decided toac-

cept this issue to gain the advantage of simple computation and comparison.

This is justi�ed as the OPD is only used for initial development and t o �nd

structural agreement, not for parameter calibration.

5.1.3 Latin hypercube sampling

For automatic calibration, parameters are varied. For a total of p = 15

parameters, assuming justm = 3 states per parameter,mp = 14 348 907

trials would be required for full factorial analysis of the parameter space.

Sampling is a way to drastically reduce this e�ort. A method for de� ning

the samples isLatin hypercube sampling (LHS, McKay et al. 1979). It is

widely used and generally recommended for initial model evaluation andto

decide if more sophisticated methods should be used for optimization(Thiele

et al. 2014).

LHS splits the parameter space intonp equally probable bins (empty

parameter sets). Justn bins are �lled with p parameter values each, forming

n parameter sets (samples). Per parameter, every state is represented exactly

once by choosing a random value within the assigned bin range. The majority

of bins remains empty. The result for a p = 2 parameter case ofn = 8

samples can be imagined as a chess �eld populated withn rooks (R), which

each symbolize ap parameter set and are distributed in a manner that

they cannot capture each other. In sum, the full parameter space of each

parameter is covered.
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5.1.4 Turn detection for simulation data

Postprocessing of the model track results is performed using theMATLAB

scripts developed in section 2.2.2. Only the turn detection methoddevel-

oped needs some modi�cation. The laboratory results are already �ltered

by the human observers for noticeable events, whereas the model results are

un�ltered. This means that �sh holding can manifest in inclined or � icker-

ing position graphs, which is not easily detected by the approach used for

laboratory results.

To overcome this issue, a moving average function was implemented(Fig-

ure 5.1). It uses a �lter window width � avg;window = 5 and detects turn

points if the slope of the average function changes. This removes tinyholding

phases with distances of� x < 0:01 m. However, sharp edges are smoothed

by this function. To prevent this undesirable behavior, the detected index

gets replaced by the index of the minimum respective maximum valueof the

original function within � avg;window . Start area and minimum � x �ltering

are performed unchanged.

900 950 1000 1050
Data point [-]
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11
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x 
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]

Position
Average
Turn detected
Notation limit

Ignored

Figure 5.1: Automatic turn point detection through a moving average function on
an example track. Above the notation limit at x = 9 :74 m, there is no observation
data available except for visits to the start area. Turns in this area are ignored.
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5.1.5 Software veri�cation

Software veri�cation is part of the modeling cycle (Grimm and Railsback

2005, p. 314) because an overlooked error in the code can obfuscate all fol-

lowing development and calibration e�orts. Initial agreement of the model

framework software code developed in this work to the well-tested code of

Goodwin et al. (2014) is described in section 4.3. Ongoing analyses were

performed following relevant changes to the framework code, like variable

handling, point interpolation, or out-of-bounds checks. A change was only

accepted if the new results were identical to the previous results. In cases

where this was not possible, e.g. development of new behavior submodels,

comprehensive testing against laboratory observations was undertaken. Vi-

sual reality checks were performed by observing the resulting time-lapsed

movement of �sh in Tecplot software.

To test if the model program was independent of the hardware running

it and the compiler and linked libraries used for its creation, it was executed

on two high performance computers. No hardware-caused di�erences were

found. However, linking of OpenFOAM libraries compiled with a di�e rent

compiler version produced tiny di�erences in results, which kept adding up

and led to �sh displacement of some decimeters after 900 time steps. Hence,

when exact repeatability between two cases is required, it is important to

not only use the same OpenFOAM version, but also compiler version, in the

best case identical libraries.

5.2 Model description

The new behavior model is described using the ODD protocol (Overview,

Design concepts, Details; Grimm et al. 2006, 2010). ODD aims to standardize

the published descriptions of IBMs. Hence, I follow the prede�ned headings

and information order which gives a overview of the model in the beginning

and mathematical details organized in submodels in the end of this section.

5.2.1 Purpose

The goal of model development described here is to reproduce movement

patterns of upstream migrating �sh observed in the EHF in a way that can

be adapted to �shway entrance applications.
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5.2.2 Entities, state variables, and scales

The individuals in the model represent �sh staying in a 3D laboratory �ume

�lled with �owing water. The �sh can be distinguished by a number of state

variables (Table 5.1) which are modi�ed through distinct behaviors. The un-

derlying state variables arefatigue, F , and motivation, M . The mathematical

de�nitions and rationale are given below in sections 5.2.4 and 5.2.7.

Table 5.1: State variables de�ning individual �sh.

Symbol Units Description

ID - Unique identi�cation number
~s m Position of the center of gravity in 3D space
~Um m/s 3D �ow velocity vector at �sh center

(interpolated from UMean, Table 5.2)
M - Motivation to swim upstream, takes values in [0; 1]
F - Fatigue, takes values in[0; 1]
Us m/s 1D �sh swim speed (resultant), relative to �ow
 s ° Horizontal swim angle, o� previous swim vector,

values in [� 180°; 180°]
� s ° Vertical swim angle o� CFD horizontal plane,

values in [� 90°; 90°]
~savg m 3D vector storing acclimatized position
tsameSpot s Time cumulatively spent within radius

r sameSpot around position ~savg

SP(1�6) m Positions of the 6 sensory points around the �sh

The laboratory �ume overall domain size is (length � width � height)

16:78 m� 2:50 m� 1:35 m, including areas behind the screen which are not

accessible to the �sh (Figure 3.2). Water depth is h = 0 :60 m. The domain

is divided into approx. 850 000mostly cubic cells, a typical cell edge length

being �( x=y=z) = 0 :05 m. Each cell1 holds information on the state variables

listed in Table 5.2. In the current formulation, they are taken constant over

time from the CFD model. More details about the CFD model domain and

variables are documented in section 3.3.

Each time step is worth � t = 0 :5 s of real time. The default total

model run time is N � t = 7200 time steps, which equals a total real time

of t total = 3600 s, or 60 min. This equals the maximum laboratory trial du-

ration (section 2.2).

1 More precisely: OpenFOAM stores most �eld information on cell faces, but al lows
for free interpolation in space.
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Table 5.2: State variables de�ning cells of the CFD model.

Variable Units Description

Cell label � Unique identi�cation number
alpha � Fraction of cell volume �lled with water
UMean m/s 3D �ow vector, averaged to steady state
acclMag m=s2 Advective acceleration magnitude
TKE m2=s2 Turbulence kinetic energy

5.2.3 Process overview

The model is based onbehaviorsthe �sh can exhibit while migrating. Behav-

iors are processes that modify the state variables. The three main behaviors

are termed migrating, holding, and drifting. An additional vertical behav -

ior is executed regardless of the main behavior chosen. The behaviorsare

explained in detail below.

The state variables are stored in arrays which preserve all time steps for

post-process reconstruction. The general schedule of updating all variables,

which takes place every time step, is visualized in Figure 5.2 and summarized

following the program structure in the following pseudo-code:

for all f ish {
getSensoryPoints ;
interpolateEnvironmentToSensoryPoints ;
getNewAngleAndVeloci ty (

chooseBehavior ;
if (B==1) migrat ing ;
if (B==2) holding ;
if (B==3) dri f t ing ;
vert icalSwimming ;

) ;
updateFishLocat ion (

if ( locat ionOutsideMesh )
then resetPosit ion ;

) ;
}

Updating the state variables to the current time step happens instantly

after its computation. Still, the process is described as synchronous updating,

as the input is always read from the preceding time step, which is not changed

anymore after it has �nished. There is no interaction among individuals

present in the model, but if were there, their order could be ignored through

this approach.
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time t

t+1

1. getSensoryPoints
2. interpolateEnvironment
3. M ~ tsameSpot, M(t�í1)

F ~ Um, F(t�í1)
4. M > F �:  Migrating
5. Swim angles ��s, ��s

Swim speed Us
Flow velocity Um

6. UpdateLocation (t+1)

Um

�W�í1

Figure 5.2: Schematic example of the model process during a typical time step.

The current time step holds the initial position and the new movement

angle and speed in�uenced by the previous time step. The �nal position after

movement is assigned to the next time step, making it the only variable in

the model which is updated in advance.

5.2.4 Design concepts

Basic principles

The model structure was developed from scratch. A basic idea was to balance

driving and retaining traits. For modeling, it is useful to split t hem into

two simple and very general categories: external stimuli and internalstates

(Lucas and Baras 2001, p. 16). According to the model purpose of simulating

behavior in a �shway, basic motivation for migration is presumed. Here, the

general concept of model design is described. Full mathematical descriptions

of all submodels are given in section 5.2.7.

External stimuli � According to Liao (2007), �for the majority of �shes,

the two most important sensory modalities for swimming are vision and the

lateral line sense�. Vision is an unreliable stimulus, as it strongly depends

on water quality and light sources. In contrast, �ow information obtained

from the lateral line system is available under all environment conditions.

Hence, it seems likely that migratory behavior is mostly shaped by �ow�eld

perception. Therefore, vision can be omitted as an orientation stimulus in

the model.

The �ow �eld can can be represented through many di�erent hydraulic

variables in CFD models, e.g. 3D velocity, acceleration, or TKE.

Acceleration was successfully used by Goodwin et al. (2014) for modeling

downstream migration of salmon smolts close to dams. It has the conceptual

advantage that it can be felt under all circumstances. In contrast, relative
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velocity can only be experienced by a swimming animal if there is avisible

reference point, e.g. �oating particles or another animal. Absolute velocity

can only be estimated in relation to a boundary visible, i.e. in a light envi-

ronment and in a short distance.

Gao et al. (2016) found the TKE to be the best stimulus for upstream

movement in a �shway.

Both stimuli were used only for horizontal orientation. For vertical swi m-

ming, Goodwin et al. (2014) used acclimatization to pressure, simpli�ed as

depth coordinate. The new behavior model needs to provide the opportunity

to test hydraulic stimuli for their e�ect on upstream migration.

Internal states � The balance of driving and retaining traits within the

model �sh is described by the variables motivation, M , and fatigue, F . They

resemble the classic model components need and cost, which constantly need

to be balanced (Willis 2011). The classic risk component (e.g., predation) is

not modeled. Details and rationale are given in section 5.2.7.

Time perception of the model �sh depends on the time step width. Good-

win et al. (2014) suggested the use of sub-time-steps to increase updatefre-

quency of internal states for faster adaptation in high-acceleration zones.

Sub-time-steps were not tested, but could be a way to reduce computational

cost. For the present model, the time step is quartered compared toGoodwin

et al. (2014) to re�ect the increased need for reaction in small-scale geome-

tries. Transport of information through time is solved e�ciently by us ing

memory coe�cients to model a moving average of a given parameter.

Position memory can be modeled in a similar way. There is strong evi-

dence that di�erent �sh species are able to memorize locations and use land-

marks for orientation in controlled experiments (Odling-Smee and Braith-

waite 2003). In the limited extend of a �ume with clear water it is plausi ble

that �sh have a good sense of orientation and remember the locations they

have been in. This is used in the model to increase motivation if the position

keeps unchanged for too long representing the presumed basic motivation

for migration.

The relationship between swim speed and fatigue is not well understood,

partly because of the huge inter- and intraspeci�c di�erences. Beamish (1978)

de�ned a widely used model, which is useful for general understanding be-

cause of its clarity. Swim speed is classi�ed as (BL, body length):

ˆ Sustained � Only red muscles active. No exhaustion. Up to 2 BL/s.
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ˆ Prolonged � Combination of red and white muscles active. Exhaustion

after 20 s to 200 min, depending on the swim speed, which is 2 BL/s

to 5 BL/s.

ˆ Burst � White muscles active. Exhaustion after 1 s to 20 s, depending

on the swim speed, which is 5 BL/s to 20 BL/s.

Swim value estimates taken from (DWA 2014).

The actual behavior rules leading to �sh shoaling and schooling are still

poorly understood, even though di�erent proposals have been made and

main features of schools were successfully reproduced in the pastdecades

(Katz et al. 2011; Herbert-Read et al. 2011; Lopez et al. 2012). Because no

shoaling pattern was identi�ed for the trout observed (2.2.2), and the un-

derlying model framework as well as pre- and post-processing would require

considerable adaptation, the e�ort was saved for future applications to other

species.

Emergence

Spatial and temporal patterns of trout positions observed in the laboratory

�ume are expected to emerge from the combination of di�erent behavior

rules. This includes favoring of wall proximity, turn positions, and the ratio

of trout moving successfully up to the �nish line in the �ume. Th e location

and frequency of behavior changes (events) is expected to vary withchang-

ing hydraulic conditions and internal state parameters. Vertical behavior

depends on acclimatized pressure and is not expected to vary stronglybe-

cause of the shallow water.

Adaptation

The �sh adapts to changes in the environment (�ow �eld) through its fatigue

variable, and to waiting time through its increasing motivation variable. The

latter one is implicitly related to �tness-seeking, as upstream migration pro-

vides new opportunities to support the �sh's �tness. However, it represents

a pushing factor, in contrast to a pulling factor. Only the general upstream

direction is speci�ed.
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Top view

Side view

x

y

2

4

5

3 1

2

6

7

3 1 x

z

Figure 5.3: Fish sensory ovoid schematic showing the local coordinate system and
all seven sensory points. The exact shape of the ovoid is variable.

Sensing

Individuals in the model perceive the mean velocity as a three-component

vector, and acceleration magnitude and their depth (vertical coordinate) as

a scalar. The values are interpolated from the discrete numerical mesh to

the �sh center and six sensory points surrounding it, representing the lateral

line system information available to the individual. This concept is adapted

from Goodwin et al. (2014) and termed thesensory ovoid(Figure 5.3).

Model �sh are not aware of their companions. Even if simulated together,

they behave independently.

Stochasticity

Stochasticity is introduced to the model at multiple points thr ough the sub-

models mathematically described in 5.2.7. I use it to recreate unpredictable

behavior variation which is not represented mechanistically, because I assume

that the details of these mechanisms either do not matter for my questions,
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or are simply unknown. This subsection lists all occurrences of stochasticity

in the model for an overview.

The pseudo-random number generator implemented uses a �xed initial

seed number in [1,1000] to allow reproduction of results.

While migrating, the horizontal swim angle is modi�ed randomly to avoid

path repetition if starting from the same position.

After being trapped for too long in the same place despitemigration

behavior is active, the �sh selects new horizontal and vertical swimangles

randomly to escape.

The drifting direction is determined by the �ow (see �drifting� submodel

description). The angle is determined randomly.

Observation

Primary model outputs are the position and swim vectors of individual � sh.

From these data, pattern metrics are computed during postprocessing using

the methods developed in section 2.2.2 for the laboratory patterns. They

include the time fraction spent in di�erent �ume zones and the tim e of the

�rst crossing of �ume control lines.

5.2.5 Initialization

The �ow �eld values are read from a completed CFD model simulation (sec-

tion 3.3). Initially, only the values for the �sh center are interpolate d from

the discrete mesh. Results are steady-state, i.e. there is no change in the

�ow �eld over time. This is a good approximation for steady �ow in a �u me.

Turbulence levels can still be obtained from TKE output of the CFD model.

Individual positions are initially set within the x span of the start area at

evenly-spaced y-coordinates spanning the �ume width, close to the bottom

according to observations (z = 7 cm).

Initial horizontal swim angle is set to  s = 180° towards the CFD mesh

x direction, i.e. facing upstream. Initial vertical swim angle is � s = 0°. The

sensory ovoid point positions are not yet computed, as they are needed for

the �rst time in the following time step. ID values are read and remain

constant during the simulation. The state variable for motivation is set to the

arbitrary value of M ini = 0 :25. All remaining state variables are initialized

to zero.
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Fish are split in two groups representing �active/strong� and �passive/w eak�

�sh. This is achieved by di�erent motivation and fatigue parameters, kM and

kF , per group. The parameters are explained in section 5.2.7.

5.2.6 Input data

The model does not use data from external sources to represent time-varying

processes (this information is required fore a complete ODD protocol).

5.2.7 Submodels

All processes in the behavior model can be understood as distinctsubmodels

representing certain traits or behaviors of the individuals. The submodels are

mathematically described in this section; all (�xed) input paramet ers chosen

for trout (without calibration) are listed in Table 5.3.

Table 5.3: Behavior model parameters and (uncalibrated) values. Parameters cho-
sen for subsequent calibration are numbered in the �rst column. First block of rows
is constant for all individuals, second block is split for �strong� and �we ak� groups.

No. Parameter name Symbol Value Units #

- Sensory ovoid size, longitudinal OX 0:50 BL 1
- Sensory ovoid size, lateral OY 0:25 BL 2
- Sensory ovoid size, vertical OZ 0:33 BL 3
1 Radius limit from initial position r sameSpot 3:0 BL 13
2 Ground speed Ug 2:5 BL

s 52
- Drift acceleration threshold factor ka;D 1:01 - 41
- Migrate acceleration threshold factor ka;M 1:01 - 40
- Pressure/elevation threshold kp 0:07 m 24
3 Trap threshold value t trap 50 s 57
4 Migrating angle acceleration in�uence  Migr;a 20 ° 45
5 Migrating angle random in�uence  Migr;r 20 ° 44
- Vertical angle correction � p 7 ° 48
6 Holding tolerance value � H 0:075 - 56
7 Motivation memory coe�cient mM 0:98 - 5
8 Fatigue memory coe�cient (decr.) mF;d 0:99 - 6
9 Fatigue memory coe�cient (incr.) mF;i 0:30 - 7

10 Spot memory coe�cient ms 0:92 - 8
- Pressure memory coe�cient mp 1:0 - 32

12 Motivation coe�cient (�strong�) kM 5:0 s -
13 Motivation coe�cient (�weak�) kM 30:0 s -
14 Fatigue coe�cient (�strong�) kF 18:0 BL

s -
15 Fatigue coe�cient (�weak�) kF 8:0 BL

s -

# is input order in the �le agentBehaviorCoe�cients.inp ; BL is body length.
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Sensory ovoid

The sensory ovoid surrounds the �sh and consists of six points (plus one

at the center, see Figure 5.3). The outer points are placed along the three

principal axis of the �sh in each direction. A local coordinate system is

de�ned by swimming direction and opposite gravity direction, with the ori-

gin being in the �sh's center of mass. The distances from the centerare

OX ; OY ; OZ [BL], where the indices denote local axes. The values chosen

here for trout are listed in Table 5.3. They re�ect the typical longish f orm

of a �sh. The state variables of the CFD model (Table 5.2) are interpolated

to all sensory points at the beginning of every time step using OpenFOAM

tools.

Rationale: The interface between the conceptual elements �environment�

and ��sh� is the �sh's skin. As the �sh is represented as a point in th e model,

its perception range would be under-estimated without the sensory ovoid.

The true range is unknown, but likely to vary with a lot of factors. The lateral

line system enables most �shes to sense weak water motions and pressure

gradients (Bleckmann and Zelick 2009) and to �feel� the surrounding �ow

�eld. Di�ering estimations for the perception range are present in t he liter-

ature: It has been modeled as randomly �uctuating in Gao et al. (2016) and

additionally dependent on the �ow acceleration in Goodwin et al. (2014),

which both was not necessary here. For comparison: Goodwin et al. (2006)

used an estimate ofOX;Y;Z = 1 :25 � 1:875 m (14�21 BL) and Kerr et al.

(2016) used an rectangle ofOX = 2 :0 BL � OY = 1 :0 BL (BL = 0.11�

0.29 m). The sensory ovoid is an important aspect of ELAM models, as it

connects Eulerian �ow information and Langrangian �sh movement.

chooseBehavior

Two state variables are used to describe the internal state of the model �sh:

motivation M and fatigue F . Depending on their relation, one of three be-

haviors is chosen through the submodelchooseBehavior. It sets the behavior

variable B to either

B =

8
>><

>>:

1 if M > F + � H (Migrating)

2 if F � � H � M � F + � H (Holding)

3 if F � � H > M (Drifting)

84 BAW Dissertationen Nr. 1 2018



NEW BEHAVIOR MODEL FOR TROUT IN A FLUME

using holding tolerance value,� H (all parameter values in Table 5.3). For

M and F , the time-averaged valuesM avg and Favg as described below are

used. The �sh acclimatizes to its current position, ~s, over time. A standard

memory function (exponential moving average) is used to link preceding

time steps to the present time step with decaying impact. The acclimatized

position, ~savg, is computed as

~sn
avg = (1 � ms)sn + ms~sn� 1

avg (5.2)

where ms [� ] is the constant position memory coe�cient (Table 5.3) and n

superscript denotes the current time step.

While the real �sh position is within a limited radius around its accl i-

matized position, a state variable, tsameSpot , is added up (Table 5.1). The

condition is

~s� ~savg < r sameSpot (5.3)

After reaching or exceedingr sameSpot or after triggering the anti-stuck reac-

tion (see submodelmigrating ), the state variable is reset to tsameSpot = 0 :0.

After being trapped in a place for tsameSpot > t trap , despite migration

behavior is active, the �sh selects its new swim angle randomly in [0,360[.

To account for cases in which �sh are vertically blocked, the vertical swim

angle is forced to� s = 0 in half of the cases, also controlled by the random

number. This submodel prevents �sh from getting stuck in any situation.

For example, trapping in front of a screen occurs because �sh are generally

moving in �ow direction, but cannot cross the screen.

The idea behind the behavior submodel is to balance the two most ba-

sic internal traits of an individual and to integrate position memory. Th e

de�nition of motivation and fatigue is as follows.

Motivation

Motivation increases or decreases depending on whether the �sh holdsor

moves. This is controlled by the cumulated time, tsameSpot [s]. Motivation is

calculated as:

M =
1

kM
tsameSpot [� ] (5.4)
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using constant motivation coe�cient kM [s]. Motivation is used in the model

in time-averaged form, M avg. It is transported through time using a moving

average function:

M n
avg = (1 � mM )M n + mM M n� 1

avg (5.5)

where mM [� ] is the motivation memory coe�cient and n superscript de-

notes the current time step.

M takes values in [0; 1]. The minimum values means �no need to move

to new upstream locations�, e.g. just after the �sh has entered new terri-

tory, and the maximum value means the �most urgent need to move to new

upstream location�, e.g. after spatial stagnation for a while. The coe�cie nt,

kM , represents the time needed to reach maximum motivation.

Rationale: Motivation measures the strength of the �sh's short-term im-

petus to migrate upstream and generally fuels upstream movement in the

model. The long-term impetus for migration results from general �tness ad-

vantages of changing location, such as reaching spawning habitats, greater

food availability, and new mating partners. However, the laboratory test

setup does not allow for conclusions on the long-term impetus. Instead, I

use the short-term impetus, which should have the same general tendency,

but could be weaker in lab results.

Fatigue

Fatigue is calculated in dependency of the �sh's swim speed relative to the

�ow, Us [BL=s], from the previous time step:

F n =
1

kF
Un� 1

s [� ] (5.6)

F n
avg = (1 � mF )F n + mF F n� 1

avg (5.7)

mF =

8
<

:

mF;d if F n � F n� 1
avg

mF;i if F n > F n� 1
avg

(5.8)

where n superscript denotes the current time step and mF the fatigue

memory coe�cient. F is rendered dimensionless by the fatigue coe�cient

kF [BL=s], which marks the maximum velocity for full fatigue. Us units are
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Figure 5.4: Brown trout in the �ume showing typical spotting along the body.

converted as follows, where BL is body length and BLtrout = 0 :27 m (Fig-

ure 5.4, calculation in subsection 2.2.1).

Us

�
BL
s

�
= Us

�
m
s

�
= BL trout

�
m
BL

�

F takes values in[0; 1]. The minimum and maximum fatigue values can

be described in words as �hold this speed for unlimited time, feeling perfectly

well� resp. �full exhaustion, try hard to avoid this state�. Exhaust ion was

not observed for brown trout in the EHF study as the water velocity was

moderate for them (Um � 0.67 m/s � 2.5 BL/s).

Rationale: Fatigue is an inverse measure of the capability to perform work

(e.g., swimming in prolonged or burst mode) and generally slows or stops

upstream migration in the model. Fatigue covers traits such as metabolic

cost, body fat reserves, oxygen concentration in the white muscles, individual

strength, and injuries. It can be related to �ow velocity via speed-fatigue

diagrams (examples for six species in Castro-Santos 2005) or the swim speed

classes of Beamish (1978). Here, a simpler approach is chosen which does not

take into account temporal aspects. As suggested by Liao (2007), location

preference in combination with information about the �ow (e.g. Um ), can

serve as a �rst approximation for metabolic cost in the absence of direct

information about energy consumption, e.g. tail-beat frequency or oxygen

consumption.

From the motivation and fatigue values, three behavior submodels for
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migrating, holding, and drifting are chosen. An additional submodel steers

vertical behavior. The four behavior submodels all produce a swimspeed

magnitude, Us, and horizontal and vertical swim angle,  s and � s, which

are transformed into the volitional swim vector, ~Us, afterwards. They are

de�ned as follows.

Migrating

In the model, migrating is swimming against the �ow vector, faster than the

�ow. Swim speed magnitude, Us, is �xed relative to the �ow at

Us = Um + Ug [BL/s ]

� s = � � m

where Um is mean �ow velocity magnitude, Ug is �xed �sh groundspeed

magnitude, � s is the �sh vertical swim angle, and � m is the mean �ow vertical

angle.

The horizontal swim angle,  s, is adjusted by  Migr;a . The adjustment

takes place to the side with the greater acceleration magnitude. De�nitions

and ranges of the state variables are given in Table 5.1. Values chosen for

model parameters are listed in Table 5.3.

If one of the lateral sensory ovoid points is placed outside the domain, the

swim angle is set adverse to the �ow vector to follow the boundary contour.

Finally added the swim angle is modi�ed randomly between �  Migr;r

every time step to avoid path repetition if starting from the same position.

Rationale: In the case of moving exactly against the �ow, this behav-

ior elicits constant movement over ground, which is an estimate for optimal

energy use: Castro-Santos (2005) found values betweenUg = 1 BL/s for

American shad to Ug = 2 :56 BL/s for striped bass as predicted optimal

groundspeed in prolonged swimming mode, Fish (2010) lists results between

Ug = 0 :3 � 5:8 BL/s as swim speed (not groundspeed) optimum for a va-

riety of �sh. The Ug value chosen here for trout (Table 5.3) is within these

literature ranges.

The wall avoidance component of migrating behavior reduces the number

of unrealistic wall collisions.

Instead of using a correlated random walk, which is a common choice for

forward movement (e.g. Goodwin et al. 2014), I decided to separate stimulus
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and random component. This enables switching them on and o� to study

their respective in�uence.

Holding

Holding means staying in position by setting the swim speed and angle

adverse to the mean �ow vector's magnitude and angles:

~Us = � ~Um

 s =  m � 180°

� s = � � m

where  m is the mean �ow horizontal angle.

Holding is often observed close to obstacles and in tranquilized zones

during upstream migration, probably to recreate from work (section 2.1.4).

Drifting

Drifting is passive movement with �ow speed. Here, also retardeddrifting

(with little e�ort) is considered. The swim speed, Us, is set to a random

value, smaller than �ow velocity, Um , and the horizontal swim angle  s,

which has no e�ect without swim speed, is set against �ow direction:

0 � Us � Um

 s = �  m

The vertical swim angle is � s = 0 .

Attraction to higher acceleration is implemented for drifting as foll ows.

If acceleration magnitude on one side exceeds acceleration on the other side

by more than a factor of ka;D ,  s is adjusted randomly up to  D;max = 90°

towards the side with higher acceleration. In combination with �ow tr ansport

and the swim speed magnitude an area of maximum dislocation is determined

downstream of the original position (Figure 5.5).

This component allows to relocate downstream without or with little

energy cost.
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Um

UsUg

��s

Figure 5.5: Area of maximum dislocation with �sh ground speed magnitude, Ug,
composition from the �ow velocity magnitude, Um , and the (random) swim speed
magnitude for drift, Us, in dependence of the (random) swim angle, s � 90°.

Vertical swimming

In addition to the vertical behavior produced by the preceding submodels,

the submodel from Goodwin et al. (2014) is used to account for acclima-

tization. Pressure p is represented by thez component of the �sh's center

position, assuming hydrostatic pressure distribution. The acclimatized pres-

sure is transported by a memory model:

pn
avg = (1 � mp)pn + mppn� 1

avg (5.9)

where mp is the pressure memory coe�cient, and pavg is the acclimatized

pressure. If the current pressure/vertical position di�ers from the acclima-

tized pressure/position for more than threshold kp, the vertical angle is set

to � p in the opposite direction.

� s = � � p if pn ? �pn� 1 � kp (5.10)

This submodel ensures that sudden changes in pressure, which canbe

sensed by �sh through their swim bladder, are mitigated immediately. It

is kept simple as vertical movement plays a minor role for the observed

behavior.

Sometimes, local �ow disturbances (e.g., strong vertical �ow) can lead to

a �sh's vertical angle being negative despite it is close to the �umebottom.
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To prevent this unrealistic behavior, a minimum vertical angle of � min = 5°

is enforced if the bottom sensory point (SP7) is outside the model domain.

From the result of either migrating, holding, or drifting, and vertical

swimming, a volitional swim vector, ~Us, is �nally computed.

updateFishLocation

updateFishLocationcomputes a new position from the volitional swim vector,
~Us, the �ow vector at the �sh center, ~Um , and the time step, � t:

~sn+1
i = ~sn

i + ( ~Us + ~Um ) � � t (5.11)

Then, it checks whether the new position is inside the domain. If the �sh

has left through an exit (boundary type �patch� in the model), a counter is

increased and the �sh is removed. If it has left through a �xed boundary (type

�wall�), the �sh gets reset to its previous position ( resetPosition submodel

description below).

If the new �sh position lies inside the model, but in the air phase, it is

forced down in 10 cm increments until it is in the water phase again. An

out-of-bounds check is performed additionally.

Rationale: Fish leaving the domain through screens or walls is an unre-

alistic behavior and needs to be precluded. In the best case, the �sh would

not choose such paths, but that would require full awareness of all bound-

aries, i.e., unlimited vision. In the present model, the �sh is limited to the

information at its sensory ovoid points modeling the lateral line system. This

information is used to steer in a wall parallel direction (see above, �migrat-

ing�), but that is not su�cient to prevent collisions if the �sh move s outside

its previous sensory ovoid. Hence, numerical safety checks are necessary.

resetPosition

If one of the checks ofupdateFishLocation fails, the resetPosition submodel

is called. It resets the �sh to its previous position.

Rationale: The chosen approach has two advantages: It is stable, because

the previous position is always valid, and it is computationally cheap, be-

cause just a check for exit boundary hits is required, not for all impenetrable

boundaries (e.g., walls). Its disadvantage, the risk of producing identical re-
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sults and getting trapped in an in�nite loop due to identical environ ment

input, is small, as there is stochasticity included in the movement model.

5.3 Test results

5.3.1 Model structure

The behavior model described in section 5.2 was implemented in computer

code and run subsequently as �reference simulation�. Alternative submodels

representing e.g. di�erent hydraulic stimuli or di�erent move ment hypothe-

ses were tested for their in�uence on pattern agreement. Submodels were

omitted to evaluate if they were necessary in the model. Selecteddi�erences

to the absolute percentage values observed in the EHF are reported in Ta-

ble 5.4.

In the reference simulation, very good agreement was achieved for the

horizontal, vertical, and turn patterns, while only the no-turns patt ern, P(4),

had a higher deviation. The OPD metric was below the limit of OPD �

10 percentage points (Table 5.4, ID 170). This accuracy is su�cient for test-

ing model structure by di�erent submodels, as the reproduction of multiple

patterns indicates that the model captures a system's essential characteris-

tics (Grimm and Railsback 2005, p. 47).

The vertical movement submodel was already used by Goodwin et al.

(2014) with a memory coe�cient mp = 0 :9984 (section 5.2.7). I obtained

better results by turning memory o� and �xing the acclimatized pre ssure

using mp = 1 :0. Eliminating the submodel using threshold kp = 1 leads to

large deviations in the vertical pattern results (Table 5.4, ID 166).

Horizontal �sh behavior is classi�ed into three categories re�ected by

submodels: migrating, holding, and drifting. Strictly speaking, holding is

not needed for simulating movement, which is why e.g. the ELAM-2014

model can go without it. To evaluate if this behavior is needed for upstream

movement simulation, it was turned o� by setting � H = 0 :0. The result-

ing deviation (Table 5.4, ID 171) in patterns P(3) and P(4) and largely

increased stay frequencies close to the start area (not shown) support the

chosen approach with holding.

Position acclimatization through time was turned o� by setting ms = 0 :0
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Table 5.4: Pattern values in the ethohydraulic �ume (absolute, �rst row) and di �erences sim�lab (relative, subsequent rows) of selected
ELAM-de simulations for setup 1e-A (slot, long screen). IDs are in ascending order and grouped by text sections 5.3.1 and 5.3.2. Key
words refer to the tests described in the text. For �horizontal� colu mns, L, M, R is left, middle, right; for �vertical�, S, M, B is surface,
middle, bottom; for �turns�, U, M, D is upstream, middle, downstream t hird of the �ume length. OPD is overall pattern deviation. SD
is standard deviation.

ID Key words P(1) Horizontal P(2) Vertical P(3) Turns P(4) No-turns OPD

L M R S M B U M D

1e-A Laboratory 35 8 57 1 1 99 26 28 47 60 �

170 Reference simulation 7 3 -10 -1 1 0 -1 7 -6 -27 6.3

166 no p limit 6 10 -16 3 27 -30 -6 13 -7 -10 12.7
171 no holding -4 -2 5 -1 6 -5 -6 -14 20 -60 12.2
172 ms = 0 12 11 -23 -1 4 -4 44 -4 -40 -43 18.5
178 high Um attr. 22 9 -31 -1 3 -3 30 -6 -25 -52 18.1
179 acclM attr. o� 6 17 -23 -1 4 -3 26 -5 -21 -43 14.9
180 wall avoid. o� 9 12 -21 -1 5 -5 18 -1 -17 -60 14.8
192 low Um attr. 52 0 -52 -1 2 -2 18 3 -21 -60 21.1
198 TKE const. 21 15 -36 -1 4 -4 45 -15 -30 -52 22.3

177 no random 11 26 -37 -1 6 -6 42 -7 -35 -60 23.1
181 y=+10cm 1 4 -5 -1 6 -5 3 10 -13 -27 7.3
182 mean (20 seeds) 1 3 -4 -1 3 -3 6 5 -11 -39 8.6

SD (20 seeds) 6 2 6 0 2 2 9 5 6 10 1.7
185a Normal Dist. -7 2 5 -1 4 -4 13 8 -21 -52 11.6
185b Inv. Norm. Dist. -1 0 1 -1 3 -2 13 -7 -6 -43 7.7
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and revealed that this process can not be eliminated from the currentmodel

(Table 5.4, ID 172).

Leaving out the migration orientation towards increasing acceleration

(Table 5.4, ID 179) and replacing it with high velocity attraction (ID 178)

both largely increased the OPD and deteriorated the agreement towards

observations. The same went for low velocity attraction (ID 192).

TKE attraction was tested using � TKE between the ovoid center and

the frontal sensory points SP(4,2,5) instead of acceleration attraction. The

minimum � was chosen to ensure a constant level of turbulence (Goettel

et al. 2015). The resulting OPD was high (Table 5.4, ID 198).

Omitting the wall avoidance submodel integrated in the migration be-

havior weakened the OPD as well (Table 5.4, ID 180), showing its utility.

5.3.2 Sensitivity

Model sensitivity is tested towards stochasticity, initial position, �sh count,

and time step width.

Stochasticity � Stochasticity is introduced into the model at the points

summarized in section 5.2.4. The easiest test of its value for minimizing

OPD would be to deactivate it by setting the random number generator to

always return a �xed value, say 0.5. However, this would cause the anti-trap

submodel to collapse, as it could not operate in case the �rst try would

fail. Thus, the �xed value was hardcoded for the test at all points following

a random number call, except before the anti-trap submodel. The results

(Table 5.4, ID 177) were clearly worse compared to the reference case.

To identify the in�uence of the random seed on results, a small param-

eter study was performed. 20 random samples of theseed parameter were

selected from its range [1,1000] by Latin hypercube sampling (section 5.1.3).

The mean and standard deviations for single pattern deviation values and

OPD are listed in Table 5.4, ID 182. Their means indicate a small overall

in�uence. The strongest negative in�uence was on both� and � of the �no-

turns� pattern. Results suggest that the model works well independent of

the chosen random seed value, which is �xed toseed = 92 in the following.

Initial position � Uniform distribution was used as there is no data to

support the choice of other distributions. To explore the consequences of this

choice, a normal distribution (highest density in �ume middle) and inversed
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normal distribution were tested using N = 12 �sh. Resulting OPD was low

for the inversed normal distribution (Table 5.4, ID 185b), but above the

arbitrary limit of 10 % for the normal distribution (Table 5.4, ID 185a). As

it is the simplest and performed best, I will stick to uniform distribution.

No considerable e�ect on OPD was noticed when the initial positions

of all �sh were moved by � y = +10 cm (Table 5.4, ID 181). Is was not

necessary to test larger shifts, as� y = 20 cm.

Fish count � The number of �sh tested in�uences both the result and

the computational cost. To check whether the current number of N = 12

is a good trade-o� between these factors,N was varied in (6,12,18,24) with

the parameter set of simulation ID 181. Fish were positioned in equal dis-

tance along the line x = 11:01 m. OPD was 14.9, 7.3, 10.9, and 8.2. As

expected,N = 6 resulted in a large deviation. The others did not change the

OPD substantially. Hence, N = 12 �sh per simulation was kept for lowest

computational cost.

Time step width � Despite update frequency e�ects, the model is mostly

independent of the time step width chosen. Only the vertical behavior model

uses an absolute limit in terms of length per time step instead of velocity.

Parameter sensitivity is tested using calibration.

5.3.3 Calibration

After showing that the new behavior model is structurally suitable for mod-

eling the behavior of upstream swimming trout in a �ume, parameter cal-

ibration is performed. Calibration counters e�ects of the simpli�cat ions in-

evitable to all models. It allows to give more precise predictions atthe cost of

being tailored more closely to the boundary conditions it has been calibrated

to.

I took 15 parameter values from the previous, uncalibrated version of

the model as a starting point and de�ned lower and upper bounds around

them, depending on physical limits and my expectations (Table 5.5). The

remaining 7 parameters were treated as constants. Another parameter, the

pressure memory coe�cient, had no e�ect in the original model and was

omitted. I chose uniform probability distribution to exactly control the limits

and because the statistical distribution for many parameters was unclear.

Generation of random LHS-distributed parameter samples (section 5.1.3)

was performed using a MATLAB script. The output precision was limited to
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Table 5.5: Latin hypercube sampling parameter limits used in the calibration
study. See Table 5.3 for names and units.

No. Parameter Default Min. Max.

1 r sameSpot 3:0 0:5 10
2 Ug 2:5 1:0 4:0
3 t trap 50:0 30:0 70:0
4  Migr;a 20:0 0:0 60:0
5  Migr;r 20:0 0:0 60:0
6 � H 0:075 0:050 0:100
7 mM 0:980 0:950 1:000
8 mF;d 0:990 0:900 1:000
9 mF;i 0:30 0:00 0:60

10 ms 0:92 0:50 1:00
11 M ini 0:25 0:00 1:00
12 kM; 1 5:0 1:0 9:0
13 kM; 2 30:0 25:0 35:0
14 kF; 1 18:0 12:0 24:0
15 kF; 2 8:0 1:0 15:0

variable-dependent digits to easy handling. This can in some cases violate the

LHS property of never having identical values for a parameter. However,as

long as the bins are small enough and the parameter values do not show large

gaps, no negative e�ects are expected. A sample size ofN = 500 parameter

sets was generated. The resulting 500 ELAM-de simulations were run on

BAW's high performance computer. The runtime cap of 3 h was exceeded in

two simulations and one simulation crashed. These three simulations were

excluded from analysis. Figure 5.6a shows a sample result snapshot.

The minimum runtime duration was 212 s, the maximum duration was

10 503 s. On average, a single run took 2363� 1709 s to complete, which

includes unrealistic parameter combinations. A typical realistic run took

1139 s to simulate 12 �sh at a maximum of7200 time steps (ID e184). For

comparison, ELAM-2014 needed 90 s to simulate 500 �sh at a maximum of

40 000 time steps. The numbers do not mean the same, as the number of

time steps varies per �sh depending on how fast it reaches an exit, but a

rough factor is that the old model is about 2930times faster.

In addition to patterns P(1�4), patterns P(5�6) were used to form new

hurdles for the model. They integrate time and success information into the

model.

For this more detailed evaluation the OPD metric was of limited use
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Figure 5.6: Exemplary model trout tracks. (a) Calibration run, �ow �eld with slot ,
ID e184, track 7. (b) Validation run, �ow �eld without slot, identical param eter
values, track 12. Flow from left to right, �sh move from right to left.

because, as a mean value, it is sensitive to extreme values. A uniform limit

of e.g. 15 percentage points turned out to be too demanding for some values

and too modest for others. Hence, local limits were de�ned per pattern. For

comparison, the patterns consisting of three values, P(1�3), were converted

into a single value using1
3

P 3
i =1 jPi;sim � Pi;lab j, i being the value iterator. For

the single value forming P(4�6), plain magnitude was used:jPi;sim � Pi;lab j.

The local limits were reduced until the arbitrary number of three simulations

matching them remained (Table 5.6).

An example of a practical result is the calculated fatigue of simulation

ID e184. All six failed �sh had a maximum Fmax = 0 :93, which is close to

full fatigue. The six �nishers had Fmax = 0 :53 to Fmax = 0 :72.

The parameter sets of the best three simulations (appendix D.3) were

applied for validation.

5.3.4 Validation

A good test for correct model function is to apply and validate it under al-

tered input. The EHF setup 2c-A, long screen without slot, is well-suited for

this task as the �ow �eld is changed but geometry is constant (section 3.4).
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Table 5.6: Calibration limits and deviations (percentage points) of the three sim-
ulations meeting them. Deviation is simulation�laboratory, data set 1e-A.

Hori. Verti. Turns No-turns AC=AD N A /N D

P(1) P(2) P(3) P(4) P(5) P(6)

Limit 10.0 5.0 15.0 20.0 20.0 20.0

e170 3.8 2.8 10.4 14.5 16.4 0.7
e184 9.6 0.7 14.8 15.6 16.7 16.0
e277 1.9 3.4 14.7 18.3 15.6 16.0

The three parameter sets found in calibration were applied in three new

simulations. All six patterns quanti�ed from data set 2c-A were used.

Applying the tight limits used for calibration, agreement decreased from

six to three (ID e184), two (ID e277), and one (ID e170) patterns matched,

respectively (Table 5.7). For ID e184, the limit violation was small for pat-

terns P(1) and P(6). The only major violation occurred in pattern P(5),

AC=AD. It was identi�ed as the best parameter set. Figure 5.6b shows a

sample result snapshot.

Calculated fatigue of simulation ID e184 was lower than for the calibra-

tion �ow �eld with jet. The six fastest �nishers had Fmax = 0 :27 to Fmax =

0:36. The six slower �sh had a maximum Fmax = 0 :71 to Fmax = 0 :80.

Table 5.7: Validation limits and deviations (percentage points) of the three cali-
brated simulations. Deviation is simulation�laboratory, data set 2c-A.

Hori. Verti. Turns No-turns AC=AD N A /N D

P(1) P(2) P(3) P(4) P(5) P(6)

Limit 10.0 5.0 15.0 20.0 20.0 20.0

e170 19.3 2.9 34.5 25.0 52.1 -29.2
e184 11.9 2.9 8.5 8.3 50.1 20.8
e277 13.2 2.9 22.5 0.0 51.5 20.8

5.4 Discussion

In this section, I discuss behavior model quality, analyze behavior model

structure, and examine technical aspects of the underlying framework with

respect to the objectives of this work (section 1.3).
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5.4.1 Model quality

To evaluate �shway design e�ciency in a meaningful way, ELAM-de must

capture all essential characteristics of real �sh and their environment. Pat-

terns are recommended to test this property, as a variety of suitablepatterns

can capture even great complexity (Grimm and Railsback 2005, p. 320).

Their strength is not important, as a combination of multiple weak patter ns

is more useful for evaluation than a single strong pattern, if they represent

di�erent features of the system (Wiegand et al. 2004).

After calibration on the EHF setup with slot, ELAM-de successfully re-

produced all six observed behavior patterns of trout. This is a good result, as

qualitative matching is the most important for model evaluation (Grimm and

Railsback 2005, p. 321). Quantitative per-pattern deviation were 18.3 per-

centage points or less, which could likely be reduced by focusing onless

parameters and by increasing calibration runs.

For validation on the EHF setup without slot, qualitative matching was

also successful for �ve patterns. However, the validation test case was not

ideally suited, because the observed trout spatial behavior did not change

considerably with the �ow �eld. The signi�cant time behavior spee d-up with-

out slot, pattern P(5), was not reproduced. A possible explanation is that

this delay is primarily caused by reaction to the slot geometry and not to

hydraulic in�uence in ELAM-de. If true, this would require changes to the

motivation and/or fatigue submodels. To test this, variable slots with con-

stant velocity would need to be examined with real �sh.

Deviations between the simulated �ow �eld without horizontal screen

bars and the laboratory �ow �eld may contribute to behavior model devi a-

tions. However, the accuracy of the CFD model is higher than the observed

spatial behavior data, which makes in�uence unlikely. In addition, behavior

model parameter calibration further reduces this error source by adaptation

to the simulated �ow �eld (Goodwin et al. 2014). Thus, the error contri bu-

tion is estimated to be negligible.

De�ning application boundaries is important for using ELAM-de in man-

agement. The results of this work are applicable to trout of similar body

length in the EHF under two hydraulic setups, with the restricti on that

timing or delays are not represented in a general manner. In ELAM-de,

motivation for upstream migration was presumed. In the behavior data, mo-
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tivation remained unclear, as only active movement could be ensured by the

line A criterion. This discrepancy could explain di�erent timing. The m ethod

of pattern-oriented testing is aimed for generality. However, without further

data is is unclear how general the identi�ed patterns are. More testsusing

data of other species and sizes as well as hydraulic �ow �elds are required to

expand the application boundaries. This is necessary to produce meaningful

values for e.g. �shway e�ciency.

In the ten best calibration simulations, the varied 15 parameters spread

along their full bandwidth. This observation points to the assumption that

some parameters correlate with each other and can be eliminated. This

should be investigated in future work by �xing some parameters. My recom-

mendation includes r sameSpot ; Ug; t trap ;  M;a ; � Holding ; mF;i ; and M ini (Ta-

ble 5.3), thus leaving 8 parameters for variation. 500 calibration simulations

may seem few, but a higher number not necessarily improves calibration. For

example, Wiegand et al. (2004) describe an IBM application where 557 simu-

lations to �nd values for 13 parameters yielded similar estimates as 50 times

more simulations.

Fish drag and thrust (Haefner and Bowen 2002; Arenas Amado 2012;

Kerr et al. 2016) were not represented in the model. Providing this level of

physical insight was not necessary for the goal of computing �shway e�-

ciency.

A constant swim speed over ground,Ug, was assumed during upstream

movement, independent of the �ow velocity Um . Concurring approaches

would have been to choose swim velocity depending on e.g. an energy bud-

get or the current motivation/fatigue ratio. However, explicit data supp ort-

ing such models is rare (Castro-Santos 2006) and further calibration would

be needed. Support for choosingUg comes from the work of Castro-Santos

(2005), who found that �...the distance-maximizing strategy for �sh swi m-

ming against �ow velocities equal to or greater than [their prolonged swim

speed] is to swim at a constant groundspeed, regardless of [�ow velocity]...�.

This author's results for striped bass agree well with my value,Ug, for pro-

longed swim speed of trout, con�rming the assumption.

Stochasticity can be needed to account for representing processes not

modeled, either because of ignorance or because they are not needed in

detail (Grimm and Railsback 2005, p. 102). In the present behavior model,

random e�ects are limited to a maximum of two spots per time step. The
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test result without stochasticity in section 5.3 indeed suggests that missing

information is added to the model.

Waiting times in the beginning of a test are not modeled, knowingly that

a realistic representation of gathering of motivation could be important with

respect to real-world tailrace applications. However, time limitations and

alien environment in the �ume could especially a�ect behavior in th e start

area. Thus, time spent in the start area was not considered.

A main objection against the older model of Goodwin et al. (2006) by

Arenas Amado (2012) was the ability for stepwise, instantaneous velocity

changes, which �requires an in�nite acceleration�. Velocity change per time

step is also used in Goodwin et al. (2014) and the present work. However,as

long as the time step is �nite, the acceleration can not be in�nite. In ELAM-

de, swim speed is limited by �ow velocity. As long as this is in realistic

boundaries for a �ume, swim speed is also bound to be realistic. Generally,

this kind of direct modeling is justi�ed because the underlying process is not

relevant for the model and results are tested (Grimm and Railsback 2005,

p. 261).

The preference of close proximity to the bottom in the observed vertical

distribution was very closely resembled in the model results. Depth was used

as a proxy for the pressure stimulus. This is possible because the�ume �ow

was in hydrostatic equilibrium, as vertical acceleration was negligibly small.

However, this pattern is considered as weak, because vertical behavior is not

important to understand migration pathways and delays in the �ume (see

Goettel et al. 2015). Still it was valuable to ensure correct model function.

Thus, the modeling approach and result both are satisfactory.

Considering these conclusions, a two-dimensional depth-averaged model

approach could have been su�cient to approach the stronger patterns. How-

ever, with respect to future applications in a real-world tailrace, depth could

be important and the capability to work in 3D allows more general use of

the model framework.

5.4.2 Model structure

In this section, the behavior model structure is analyzed to �nd explanations

for simulated behavior and theories for real behavior. Results of alternative

behavior rules (section 5.3.1) are included in the analysis. It lies in the na-

ture of a model that insights about the real world are indirect (Grimm and
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Railsback 2005, p. 348). Models contribute to research by providing unlim-

ited opportunities for theory testing (Willis 2011). This ability can ai d �eld

tests. This section is divided by theoretical aspects that were tested using

contrasting model versions.

Direction choice � The choice of direction is fundamental to simulating

upstream migration. Kerr et al. (2016) summarize the most common ap-

proach as the �general principle that space use is dictated by energy conser-

vation�. This approach is implemented e.g. by Abdelaziz (2013) and Zielinski

et al. (2015) by moving to the upstream cell with the lowest velocity. How-

ever, this does neither explain the observed behavior of brown trout swim-

ming in the jet of higher velocity, close to the right wall, nor the occurrence

of turns.

Diverse stimuli can be imagined. For example, in Goettel et al. (2015),

turbulence, water velocity, cover, and the presence of conspeci�cs appeared

to be the most important variables for dace behavior. From this list, ELAM -

de enables testing of hydraulic parameter stimuli. Contrasting results of

di�erent behavior rules showed that using attraction to higher advective

acceleration magnitude, j~aj (Equation 4.7), the desired behavior emerged,

unlike using low velocity, high velocity, or constant TKE as an attraction

stimulus. This �nding is supported by Goodwin et al. (2014), who showed

that acceleration and pressure,p, are su�cient to reproduce downstream �sh

navigation behavior. It was con�rmed by a test without any attraction to

a hydraulic stimulus, which yielded a worse result. One explanation would

be that the trout tested were not challenged by the velocity tested. Another

possible reason is that acceleration integrates much information present in

the �ow �eld and yields a good approximation of the lateral line recept ion.

In the light of the results, it seems to be more promising to be addressed

in future work than the usual turbulence parameters, e.g. TKE or Reynolds

stress.

In the vertical direction, the application of Goodwin's simple submodel

and the hydrostatic pressure/vertical coordinate as stimulus were successful.

Separate treatment compared to the mainly horizontal behaviors is justi�ed,

as vertical swimming/buoyancy positioning is usually distinct from l ateral

swimming (Willis 2011).

�Active/strong� and �passive/weak� groups � It was necessary to split

the �sh in two groups with di�erent motivation and fatigue coe�cients ,
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kM and kF , to match the turns and no-turns patterns, P(3) and P(4). As-

suming that hydraulic in�uence was constant betweens tests and no other

environmental in�uence was present, internal di�erences remainas a cause

for di�erences. This is despite the trout had similar body lengths, which is

often used as a basic indicator to classify �sh. Also a similar activity level

was ensured by only considering actively moving �sh (lineA criterion). Care

must be taken to not split the sample in many di�erent groups for easier

calibration.

The current submodels applied are too coarse to allow conclusions about

the cause, e.g. di�erent boldness, exhaustion, or �tness levels. On a very

general level, reaching high values ofF could represent high metabolic cost.

For constant coe�cients, the values allow evaluation of competing �shway

designs on a quantitative basis. Following this logic, setup2c-A would more

e�cient for trout than setup 1e-A, because more �sh �nished with lower

maximum fatigue. However, further validation is required to create trust in

such conclusions.

Holding � As discussed in section 4.1.3 and appendix E, the behavior

model structure of ELAM-2014 (Goodwin et al. 2014) was not suitable for

application to upstream migration in small-scale. One reason for that is the

assumption of continuous swimming (also pointed out by Arenas Amado

(2012) with regard to Goodwin et al. 2006). This assumption is arguable for

energy-saving migration with the �ow, but not applicable to energy costly

movement against the �ow, as documented by drifting and holding phases in

the �ume tracks (section 2.2.2). In ELAM-2014, holding could indeed emerge

in the form of milling around a point. As shown in this work it was necessary

to integrate explicit holding and drifting behavior to obtain good re sults for

the �ume.

Repeated attempts � The ability to produce repeated slot entrance at-

tempts was identi�ed to be crucial for upstream moving �sh models because

this natural behavior increases success probability (Castro-Santos 2005,Good-

win 2015, pers. comm.). From a modeling perspective, the observed turns

represent a similar behavior. It successfully emerged from the interaction of

fatigue F and motivation M , the main variables of the new behavior model.

Fatigue was not coupled to time as done traditionally, e.g. in the rules-of-

thumb derived from Beamish (1978), also known as theethohydraulic scale
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(Gisen et al. 2017). This is because an IBM is far superior by allowing to

consider acclimatization, or memory.

Memory functions of the classic form � n
avg = (1 � m)� n + m� n� 1

avg are

used to acclimatize motivation, fatigue, pressure, and location parameters

over time in ELAM-de. The formulation is simple, can be �ne-tuned easily,

and includes a temporal component. It underlines the necessity of simulating

memory in �sh behavior models to incorporate past experience into decisions,

see e.g. Bracis et al. (2015) for a demonstration with respect to foraging. By

turning o� the spatial memory, too many turns were produced upstream.

This could represent a spatial learning process (Odling-Smee and Braithwaite

2003) in the trout, steering preference for the acclimatized position and

slowing progression.

In contrast to approaches forcing the �sh to constantly swim upstream

until failure (e.g. Abdelaziz 2013; Zielinski et al. 2015), the chosen approach

allows the same model �sh to behave di�erently at the same position.

Wall avoidance � Wall avoidance behavior was shown to contribute

to model quality. Changing the direction close to a wall was done before

using a distance of 15�5 BL (Arenas Amado 2012), or an unde�ned �close�

distance (Haefner and Bowen 2002). Goodwin et al. (2014) simply reset �sh

moving behind a wall to a position inside the model domain. Using the�ow

direction, the present model has the most �exible mechanism, as itworks

also in curved geometries. This is easier and more robust than to compute

the angle towards the boundary surface and derive a new direction from it.

5.4.3 Framework

After discussing results of the new behavior model, now technical details

of the upgraded software framework are discussed with regard to the basic

software framework part of ELAM-2014.

Arenas Amado (2012) criticized that the ELAM model of Goodwin et

al. (2006) gets �ow �eld information from a separate software, which �may

hinder studies [...] under unsteady �ow conditions�. This author 's work, how-

ever, did not use unsteady �ow �elds. There are two reasons why a steady

�ow �eld was also chosen for ELAM-de input: First, storing and reading

the 3D �ow �eld values for N t = 7200 time steps, with an estimated size

of 216 gigabyte, would cause massive computational cost. Second, the util-

ity would be low, as the �ow �eld was largely steady in the �ume. Some
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unsteady �ow separations occurred, but it was not possible with reasonable

e�ort to synchronize them with observed �sh data, as would be required.

Therefore, averaging was the best solution here. For future applications, the

ELAM-de framework is able to read time-varying CFD results with litt le

changes to the code due to its coupling to OpenFOAM.

The old framework used in ELAM-2014 ran several thousand times faster

then the new one according to approximative comparisons. The probable

main reason is that it utilizes contravariant space by working only on struc-

tured grids. Hence, the computational domain has to be split into single

blocks for ELAM-2014 depending on the grid resolution and function, e.g.

as an exit route. This renders it almost impossible to model �sh behavior

close to complex geometric features at a meter-scale, e.g. for a �shwayen-

trance in a tailrace. To account for that issue, the ELAM-2014 framework

was rebuild in ELAM-de to work with arbitrary unstructured meshes. That

came at the price of dropping the ability to perform spatial operations in

contravariant space, especially slowing variable interpolation and wall inter-

actions.

Movement close to walls can cost a lot of computer resources. It is a

minor issue for mid- and large-scale domains, where �sh are unlikely toget

close to a boundary too often. However, in the present small-scale model, it is

computationally expensive. After every move, the �sh center and six sensory

points are checked if they are outside the model domain and if the last step

did cross an internal wall. For clear, light water, this approach based on

the sensory ovoid may even underestimate �sh information, as their �vision�

range is limited by the ovoid size. However, it seems to be a good estimate

for real world applications, where vision is often very limited due toturbidity

and darkness.

The free water surface represented in the CFD model caused special

treatment in the framework implementation. This is a unique feature of the

new model described in this work and allows to treat behavior at hydraulic

head drops without simpli�cations, such as rigid lid boundaries. It is impor-

tant to all applications featuring entrance slots or �shway slot.
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Conclusions and future work

6.1 Conclusions

In this work, a new individual-based model (IBM), �ELAM-de�, for simu -

lating upstream �sh migration in small spatial and temporal scales was de-

veloped, calibrated, and validated using patterns of upstream movingtrout

in a model �shway entrance pool.

Compared to reviewed IBMs for upstream migration, ELAM-de is the

�rst model to combine high temporal ( � t = 0 :5 s) and spatial resolution

in three dimensions (� x;y;z � 5 cm), a behavior model thoroughly tested

against real �sh data, and an open source computational �uid dynamics

(CFD) model. It works on unstructured polyhedral meshes with free-surface

�ow �elds from the open source CFD tool box OpenFOAM ®. A new approach

for wall avoidance was developed using the �ow vector for orientation. It is

more simple and more robust than existing approaches and works even on

small-scale, curved geometries.

For behavior analysis in the ethohydraulic �ume (EHF), mathematical

de�nitions of six patterns were developed for consistent use in bothlabo-

ratory and simulation experiments. The �ume investigations were not orig-

inally designed for analyses of movement patterns, which means that no

statistically valid interpretation was possible. Still, the patter n accuracy was

su�cient for developing and testing ELAM-de, as not exact values, but char-

acteristic qualitative patterns were needed.

From the results of the model, several conclusions can be drawn.

1. Advective acceleration magnitude,j~aj, is a functioning hydraulic stimu-
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lus for horizontal direction choice of upstream migrating trout. It was

used before in simulations of downstream migrating juvenile salmon

close to dams. Pressure,p, approximated by the vertical depth, con-

tributed to reproducing observed vertical distributions.

2. Contrasting di�erent versions of the behavior model suggests that sim-

ple energy saving rules to choose upstream migration direction are not

generally suitable. Neither high nor low velocity attraction led to emer-

gence of the observed spatial patterns for brown trout.

3. The concept of splitting movement into three behaviors (forward, hold-

ing, and drifting) as well as the concept of balancing driving and re-

straining factors (summarized in motivation and fatigue variables) was

necessary to produce all observed patterns. This model structure is

general enough to be used in models of upstream movement in envi-

ronments considerably larger than a �ume. In combination with mem-

ory functions, it is able to produce repeated attempts to enter e.g.a

�shway entrance, which is important for modeling attraction e�cien cy.

However, further testing is required to evaluate the generality of the

submodel rules. In the current formulation, the model is bound totrout

and the two �ume setups tested.

4. Brown trout in the EHF as well as shad and curimatá in two dam

tailraces preferred proximity to geometrical boundaries while moving

upstream or holding. However, these observations have to be con�rmed

by suitable experiments. Still, the observations support the practice

common at the German federal waterways to place the main �shway

entrance at the bank, in contrast to a mid-stream location.

Further work is recommended to con�rm the conclusions, to make ELAM-de

faster and more general, and to access new application areas.

6.2 Future work

There are three major �elds in which the present work should be continued:

Framework development, development for �ume scenarios, and development

for �eld-scale �shway attraction.
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6.2.1 Framework development

In the state describe here, ELAM-de framework is limited to simulating rel-

atively few �sh at once. For future applications, it is important to imp rove

performance. A �rst step would be to test if the issues with mesh insideness

(section 4.2.2) are resolved in newer OpenFOAM versions. Then, a faster

algorithm for spatial interpolation would be useful. For comparison, the cur-

rent ELAM model framework of R.A. Goodwin (2017, pers. comm.) can

handle time-varying hydraulic input and moving meshes of several hundred

gigabyte size as well as interacting �sh, e.g. for estuary or river reach ap-

plications. This is made possible by parallelization, code improvements, and

commercial (Tecplot) libraries. The programming language used is stillFor-

tran, but was updated from FORTRAN 70 to Fortran 90, like in the present

work. It is likely that the current implementation of ELAM-de too coul d

bene�t from memory optimization (currently, all time step data is st ored),

parallelization (the �sh loop is well-suited for that), and improved 3D inter-

polation. These steps would enable analysis of unsteady �ow data, e.g. from

a large-eddy simulation turbulence model. Still, it would be challenging to

synchronize hydraulic and behavior data.

6.2.2 Flume scenarios

ELAM-de can be used with little e�ort to further investigate data from

the EHF. Pattern data can be obtained using the methods developed in

chapter 2.

A more comprehensive calibration, using the 8 suggested parameters in-

stead of 15, could yield quantitatively better results. More testing using pat-

terns clearly in�uenced by hydraulic change is required to make the behav-

ior model more general and reliable. To improve time delay representation,

changes to the motivation and/or fatigue submodel could be necessary.

Application to the short screen scenario and to other species than trout

tested in the EHF would make the model more general and raise the oppor-

tunity to identify species-speci�c parameters. This could involve the need

to include a shoaling submodel. Shoaling could to be more likely to occur

in other species than brown trout, as anecdotal observations ofschneiders

and nases in the EHF show. It is easy to image that a dedicated shoaling

model would help achieving good results for these species. A starting point
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for model development would be the three classic �tra�c rules� (coll ision

avoidance, directional orientation, and cohesion) as described by Lopez et

al. (2012).

Automatic 3D tracking of �sh in the �ume is in development. If such

tracks become available, they could highly increase position and time accu-

racy of the movement data and lead to more precise pattern descriptions,

which could further improve the model.

Analysis of trout weight and length data, which are available for the 2016

tests, could reveal body fat reserves. These could be analyzed withrespect to

fatigue coe�cient as present in ELAM-de. For future tests, the collection of

e.g. hormone data could show linkage to the motivation coe�cient. If these

data would correlate between lab and model, this would further corroborate

the model approach and allow to investigate relations between internalstate

and hydraulics.

6.2.3 Fishway attraction

With additional development, the model can be used as a basis for evaluating

�eld-scale �shway attraction in a dam tailrace. This is a prevailing r esearch

area in Germany (Gisen et al. 2017). If a hydropower facility is presentat a

dam, which is the case for 65 % of the 251 dams on the German federal wa-

terways, it represents the most continuous discharge source. Following the

observation that upstream migrating �sh swim against the �ow direction,

it is common practice to build the entrance close to the powerhouse outlet

(Clay 1995, pp. 67, 73). Because of the high costs associated with build-

ing close to existing structures, the details of an entrance con�guration are

highly relevant to management decisions. Commonly discussed categories in-

clude location, discharge, and geometrical design of a �shway entrance.For

practical use, the categories require evaluation of di�erences in theorder of

some meters, hectoliters, and decimeters, respectively.

The high resolution required implies some challenges. Movement observa-

tions are crucial for model development, however costly and di�cult to record

(section 2.1.2). The ongoing campaign conducted by BfG at the Eddersheim

dam on the Main river builds a database of 3D tracks (Thelma Biotel 2017),

which could be utilized for this goal. 3D CFD modeling of a tailrace in high

resolution is way more complex than a �ume, but approaches for dealing

with a turbine inlet exist, e.g. Gisen et al. (2017). It is likely that behavior
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model rules have to be adapted to the new environment to better account

for e.g. larger dimensions. Likewise, behavior patterns could be di�erent and

could require new analysis approaches. However, the basic concept of using

active movement, holding, and drifting together with motivation and fat igue

can be applied generally. The key stimuli identi�ed in this work, acceleration

and pressure, are promising to be applied in a tailrace model.
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Acronyms

ADCP Acoustic Doppler Current Pro�ler
ADV Acoustic Doppler Velocimeter/Velocimetry
BAW Bundesanstalt für Wasserbau (Federal Waterways

Engineering and Research Institute)
BCRW Biased correlated random walk
BfG Bundesanstalt für Gewässerkunde (Federal Institute

of Hydrology)
BL Body length 1 (of a �sh)
CFD Computational Fluid Dynamics
EHF Ethohydraulic �ume
ELAM Eulerian-Lagrangian-agent method
FVM Finite Volume Method
IBM Individual-based modeling/model
LHS Latin hypercube sampling
OPD Overall pattern deviation
PIT Passive integrated transponder
RANS Reynolds-averaged Navier-Stokes (equations)
RMSE Root-mean-square error/deviation (RMSD)
SD Standard deviation (s for sample, � for population)
SMS Surface-Water Modelling System
TKE Turbulence kinetic energy2

UML Uni�ed Modeling Language
USACE United States Army Corps of Engineers
VOF Volume-of-�uid (method)
WFD (European) Water Framework Directive

1Equivalent to Total Length, TL, in the context of this thesis. TL is � the greatest
length of the whole body between the most anterior point of the body and t he most
posterior point, in a straight line, not over the curve of the body� (�shba se.org 2016).

2Turbulent kinetic energy is more common, but semantically wrong. Not the energy is
turbulent, but the turbulence contains energy.
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Appendix A

Running ELAM-de

Prerequisites: A computer with OpenFOAM 2.3.1 installed running a Linux
operating system, e.g. the high performance computerHera of BAW. Open-
FOAM hydraulic results of the case to investigate, including the �elds UMean
and acclMag (section B.2). Areas not accessible have to be cut, outlets have
to be marked aspatch , and internal walls have to be marked asinGroups
internal in the �le constant/polyMesh/boundary .

1. Source OpenFOAM environment.

2. Create an ELAM-de case folder, containing the ELAM-de executable,
a folder �input�, a folder �output�, and (optional) a SLURM submit
script for Hera. Optional script newCase.shcan be used for this step.

3. Edit input folder containing �les agentBehaviorCoe�cients.inp , �sh-
Positions.inp, rules.inp, simSettings.inp.

4. Start using the console command e.g.ELAM-beta -case /lustre/w1/
gisend/eh-rinne/07_lang_pfosten_slot_cut/ . Change path and ex-
ecutable name if needed. Optional scriptsubmit_elam-beta.slurm
can be used for this step.

5. Postprocess using MATLAB scripts and Tecplot layout �les.
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Appendix B

ELAM-de development

B.1 Compatibility C++/Fortran

The main ELAM-de program is written in C++, while the behavior model
and some functions are written in Fortran. To call a Fortran subroutine f rom
C++, it must be declared as a function prototype and wrapped as C code
using the extern "C" {...} command. Its name has to be all lower-case
and an underscore needs to be appended. All arguments in (and passed
to) Fortran must be passed by reference, not by value. C++ automatically
applies reference-style passing to array arguments: they decay to a pointer
pointing at the �rst element of the array. For compatibility reasons, on ly
variables or plain arrays are allowed to be passed to Fortran. Object-type
data storages likestd::vector can not be used. Compatible data types are
listed in Table B.1.

Fortran indexes the �rst element of an array as 1, whereas C++ treats it
as a pointer with an iteration of 0. For example, to access the third element
of an array available in both languages, one needs to address it asarray(3)
(Fortran) or array[2] (C++). For multi-dimensional arrays, one should note
that C++ varies the subscripts in row-major order and Fortran in colum n-
major order (microsoft.com 2015). The practical implication is that the order

Table B.1: Equivalent variable types in Fortran and C++ used for the present
work (partly based on yolinux.com 2015). The de�nition space is bound by memory
size.

Fortran 90 C++ 11 De�nition Memory size

integer int Z 4 bytes = 32 bits
double*8 double R 8 bytes = 64 bits
logical*1 bool (true,false) 1 byte = 8 bits

BAW Dissertationen Nr. 1 2018 125



APPENDIX B

of indices is reversed between the languages. For example,array(5,4,3)
refers to the same element asarray[2][3][4] .

C++ makes heavy use of pointers, as they allow to operate with large
data blocks very e�ciently. For example, a large array of a known data type
is de�ned just by the pointer to its �rst element in memory and its size. The
explanation of two operators is stated here for reference:

&myvar� The ampersand in this case is the address-of operator. It passes
the memory address of the variablemyvar if used in a function call. It
reads �address of�. For example, the receiving function de�nes the pointer
mypointer which stores the memory address.

*mypointer � The asterisk in this case is the dereference operator. It
returns the value of the variable at the memory address pointed at by the
pointer mypointer. It reads �value pointed to by�. In our example, it is the
value of myvar.

B.2 acclMag tool source code

This tool was derived from an existing OpenFOAM tool and computes the
advective acceleration magnitude �eld from the mean velocity �eld.

1 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*\
2 License
3 This program is free software : you can redistr ibute it
4 and /or modify it under the terms of the GNU General
5 Public License as publ ished by the Free Software
6 Foundation , either version 3 of the License , or (at your
7 option ) any later version .
8
9 This program is distr ibuted in the hope that it wil l be

10 useful , but WITHOUT ANY WARRANTY ; without even the
11 implied warranty of MERCHANTABILITY or FITNESS FOR A
12 PARTICULAR PURPOSE . See the GNU General Public License
13 for more detai ls .
14
15 You should have received a copy of the GNU General Public
16 License along with this program . If not , see
17 <http :// www.gnu .org / l icenses />.
18
19 Copyright (C) 2011 -2012 , OpenFOAM Foundation
20 Copyright (C) 2015 -2016 , David Gisen , Bundesanstal t fuer
21 Wasserbau , www.baw.de
22
23 Appl icat ion
24 acclMag
25
26 Descript ion
27 This ut i l i ty calculates and outputs the magnitude of the
28 time - averaged 3D accelerat ion field .
29
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30 The -noWrite option just outputs the max /min values
31 without wri t ing the field .
32 \*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
33 # include "calc .H"
34 # include " fvc .H"
35 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
36 void Foam :: calc ( const argList & args , const Time& runTime ,  -

const fvMesh & mesh )
37 {
38 bool wri teResults = !args . opt ionFound ( " noWrite " ) ;
39 IOobject UMeanHeader
40 (
41 " UMean ",
42 runTime . t imeName () ,
43 mesh ,
44 IOobject :: MUST_READ
45 );
46
47 if ( UMeanHeader . headerOk () )
48 {
49 Info << " Reading UMean " << endl ;
50 volVectorField UMean ( UMeanHeader , mesh );
51 volTensorField gradUMean ( fvc :: grad ( UMean )) ;
52
53 volScalarField acclMag
54 (
55 IOobject
56 (
57 " acclMag " ,
58 runTime . t imeName () ,
59 mesh ,
60 IOobject :: NO_READ ,
61 IOobject :: NO_WRITE
62 ) ,
63 mag( UMean & gradUMean )
64 );
65
66 Info << " acclMag max /min : "
67 << max( acclMag ). value () << " "
68 << min ( acclMag ). value () << endl ;
69
70 if ( wri teResults )
71 {
72 acclMag . write () ;
73 }
74 }
75 else
76 {
77 Info << " UMean not present " << endl ;
78 }
79 Info << "\nEnd \n" << endl ;
80 }
81 // * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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B.3 BehaviorRule interface

Figure B.1: Variable interface to subroutine/function BehaviorRule as of ELAM-
2014, with adaptations for OpenFOAM compatibility, not including later chan ges
for the new behavior model presented in this work. Gray background stands for
omitted variables.

Subroutine BehaviorRule( Equivalence in DRIVER code: (italics added later) Provided by:
I FishNumber, ! Local scalar FN Current FN, by calling loop over Nfish in StrELAM_main.f/581
I NFish, ! Local scalar Moved from line 56 because of order in C++ argument list Coeff(55), linecount VfishC_1.inp
I TimeStep, ! Local scalar TimeStep Calling loop over TotTimesteps
I TimeStepLength, ! Local scalar DT SimSettings.inp / INPUTVALUES()
I NAgents, ! Local scalar '= coefficients(4) / but only 4 are used here
I NTecFieldVar, ! Local scalar # of environm. var. in addition to x,y,z,u,v,w/moved to rules.inc DRIVER / rules.inc / = 4
I FSOLIMIT ! New variable rules.inp / previously read in by BR.f90
I SPFound_NP, ! Local array SPFound(1,1:FSOLIMIT,FN,NP) DRIVER, complicated, = 1 if Sensory Points are present
I FishSensoryLocation_NP, ! Local array FishSensoryLocation_NP(1:3,1:FSOLIMIT,FN) SPcreate + FishLocation
I FishLocation_NPm1, ! Local array FishLocation(1:3,1:NFishInRelFile,NPorTS-1) not needed Fish position, XDIST, YDIST, ZDIST
I FishLocation_NP, ! Local array FishLocation(1:3,1:NFishInRelFile,NPorTS) Fish position, SV, FV, dt
I FishSensoryVelocity_NP, ! Local array FishSensoryVelocity_NP(1:3,1:FSOLIMIT,FN) UATFISH, VATFISH, WATFISH
I FishSensoryFieldVars_NP, ! Local array FishSensoryFieldVars_NP(1:NTecFieldVar,1:FSOLIMIT,FN) '=PRATFISH, TKATFISH, ACCLMATFISH, STRXYZUVWATFISH
I MiscStorag_NPm1, ! Local scalar MiscStorag(FN,NP-1) Unused
O MiscStorag_NP, ! Local scalar MiscStorag(FN,NP) “
I SEED, ! Local scalar SimSettings.inp / INPUTVALUES()
I FhSpdRes_NPm1, ! Local scalar FhSpdRes(FN,NP-1) Initialized to 0
O FhSpdRes_NP, ! Local scalar FhSpdRes(FN,NP) Calculated mult. times, e.g. FhSpdRes_NP = FHBODYLENGTH *

FhBodyLngthVel(4), or FhSpdRes_NP = FHBODYLENGTH * FhBodyLngthVel(2)
I SVvoCFDXYZ_NPm1, ! Local array 1st position '=> VelFishCFD(1,FN,NP-1) In velocity = Last out velocity

! 2nd position '=> VelFishCFD(2,FN,NP-1) “
! 3rd position '=> VelFishCFD(3,FN,NP-1) “

O SVvoCFDXYZ_NP, ! Local array 1st position '=> VelFishCFD(1,FN,NP) Out velocity = FhSpdResXY * COS(SVaoCFDXYRad)
! 2nd position '=> VelFishCFD(2,FN,NP) “
! 3rd position '=> VelFishCFD(3,FN,NP) “

I SVaoCFDXYZ_NPm1, ! Local array 1st position '=> SVAOCFDXYZ(1,1:NFishInRelFile,NP-1) In angles, initialized to 0
! 2nd position '=> SVAOCFDXYZ(2,1:NFishInRelFile,NP-1) “

O SVaoCFDXYZ_NP, ! Local array 1st position '=> SVAOCFDXYZ(1,FN,NP) Out angle horizontal (xy-plane)
! 2nd position '=> SVAOCFDXYZ(2,FN,NP) “   “     vertical

I SVaoSVXY_NPm1, ! Local scalar SVOSVXY(FN,NP-1) swim vector angle relative to the previous swim vector in the horizontal plane
O SVaoSVXY_NP, ! Local scalar SVOSVXY(FN,NP) Computed from BR:749 on
I AgtProb_NPm1, ! Local array AgtProb(1:NAgents,FN,NP-1) '= Coefficients(3)
O AgtProb_NP, ! Local array AgtProb(1:NAgents,FN,NP) Compute with formula of Anderson (2002) BR:625
I AgtDetctMetrcAmb_NP, ! Local array AgtDetctMetrcAmb(1:NAgents,FN,NP) (2) = Formula (2014b,p.4) decibel scale / = coefficients(42)

(4) = FishEleva_NP
(6) = 0.80

O AgtDetctMetrcAmb_NPp1, ! Local array AgtDetctMetrcAmb(1:NAgents,FN,NP+1) (2) = formula (2014b,p.4)
(4) = AgtDetctMetrcAmbMem(4) * Coefficients(38)

I AgtDecision, ! Local array AgtDecision(1:NAgents,1:NFishInRelFile,1:TotTimeSteps) Ini: -999, determined in subroutine
O NumDecisions_NP, ! Local scalar NumDecisions(FN) Counts  # of decisions made by individual fish – output loop
O VldSVOrientXYZ_NP, ! Local array VldSVOrientXYZ(1:2,FN,NP) Valid Orientation. From BR.f90:363,1514.
I ExtraDiagnostics, ! Local logical ExtraDiagnostics SimSettings.inp line 5

nCoeff ! New variable rules.inp
I Coefficients, ! Local array Coefficients(1:nCoeff) AgentBehaviorCoefficients.inp
O SVvoFVXYZ_NP, ! Local array VelFishPTV(1:3,FN,NP) PTV=? BR.name used in main()
O SVvoSVXYZ_NP, ! Local array VelFishPSV(1:3,FN,NP) PSV=? BR.name used in main()
O SVaoFVXY_NP, ! Local scalar SVOFVXY(FN,NP) set in BR (?)
O AgtDetctThrshld, ! Local array AgtDetctThrshld(1:NAgents) No need to output
O AgtDetctMetrc_NP, ! Local array AgtDetctMetrc(1:NAgents,FN,NP) (2) = AcclM, (4) = p, s. l.34. Formula BR:475
O AgtUtil_NP, ! Local array AgtUtil(1:NAgents,FN,NP) '= AgtProb_NP(AGT) * AgtIntUtil(AGT) BR:631
I FhSPaoSV, ! Local array FhSPAOSV(1:5) FishSensoryPointAngleOffSwimVector From SPcreate.cpp
I FhAttrb_NPm1, ! Local array 1st position '=> FhAttrb(1:nFhAttrb,1:NFishInRelFile,NP-1) Attribute #1: 0=Fish ; 1=Invertebrate ; -1=To be removed from simulation
O FhAttrb_NP, ! 1st position '=> FhAttrb(1:nFhAttrb,1:NFishInRelFile,NP) set in updateFishLocation, set to NPm1 in ELAM-2014
I AtnDft, ! Local array AtnDft(1:AtnDftDim,1:AtnDftDim) AgentToAgent-Interaction? = 0
I AtnDftDim, ! Local scalar AgentToAgent-Interaction? = 1

moved Moved NFish moved
I NFishInRelFile, ! Local scalar Superfluous, replaced by NFish '= nfish (StrELAM_main.f/457)
I TotTimeSteps ! Local scalar SimSettings.inp line 3 / INPUTVALUES()
. )
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B.4 Make�le

The Make�le contains commands to compile and link ELAM-de �les and
existing OpenFOAM �les. The standard tool wmakeis not applicable, because
it does not support Fortran �les.

1 # Compiler choice ( icpc -g , icc , g++ , ...)
2 CC = icpc
3 # C++11 ( ISO/ IEC 14882:2011)
4 STD = -std=c++11
5
6 # Compile - t ime flags
7 CFLAGS_F90 = -c - f ixed
8 CFLAGS_C ++ = -c $(STD) -DWM_DP -diag - disable 525
9

10 # Include director ies to search for header f i les (- I )
11 FOAM_DIR = / lustre /sw/apps / OpenFOAM /OpenFOAM -2.3.1/ OpenFOAM -

-2.3.1/ src
12
13 # Include paths of header f i les
14 EXE_INC = \
15 -I$ ( FOAM_DIR )/ OpenFOAM / lnInclude \
16 -I$ ( FOAM_DIR )/ f in i teVolume / lnInclude \
17 -I$ ( FOAM_DIR )/ OSspecif ic / POSIX / lnInclude \
18 -I$ ( FOAM_DIR )/ tr iSurface / lnInclude \
19 -I$ ( FOAM_DIR )/ meshTools / lnInclude
20 #-I$ ( FOAM_DIR )/ turbulenceModels / incompressible /  -

turbulenceModel / lnInclude \
21 #-I$ ( FOAM_DIR )/ turbulenceModels / incompressible /RAS/  -

lnInclude
22
23 # Library path (s) and l ibrar ies
24 EXE_LIBS = \
25 -L$( FOAM_LIBBIN ) \
26 - lOpenFOAM \
27 - l f in i teVolume \
28 - l fvOptions \
29 - lmeshTools \
30 - lsampling
31
32 # RULE:
33 # target : dependencies
34 # command (s)
35 . PHONY : ELAM -beta
36 all : ELAM -beta
37
38 ELAM -beta : random .o wri teOutput .o vectorRelat ion .o  -

BehaviorRule .o hydroInterpolat ion .o sensoryPointCreat e .o  -
updateFishLocat ion .o ELAM -de.o

39 $(CC) -o ELAM -beta $(STD) random .o wri teOutput .o  -
vectorRelat ion .o BehaviorRule .o hydroInterpolat ion .o  -
sensoryPointCreate .o updateFishLocat ion .o ELAM -de.o $(  -
EXE_INC ) $( EXE_LIBS ) - l i fcore
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40 # - lifcore , - l i fport include Intel modules ( fi le handl ing )  -
for l inking - automatical ly in compil ing below

41
42 random .o: random . f90
43 ifort $( CFLAGS_F90 ) random . f90
44
45 wri teOutput .o: wri teOutput . f90
46 ifort $( CFLAGS_F90 ) wri teOutput . f90
47
48 vectorRelat ion .o: vectorRelat ion . f90
49 ifort $( CFLAGS_F90 ) vectorRelat ion . f90
50
51 BehaviorRule .o: BehaviorRule . f90
52 ifort $( CFLAGS_F90 ) BehaviorRule . f90
53
54 hydroInterpolat ion .o: hydroInterpolat ion .cpp  -

hydroInterpolat ion .h
55 $(CC) $( CFLAGS_C ++) -DNoRepository hydroInterpolat ion . cpp -

$( EXE_INC ) $( EXE_LIBS )
56
57 sensoryPointCreate .o: sensoryPointCreate .cpp  -

sensoryPointCreate .h
58 $(CC) $( CFLAGS_C ++) sensoryPointCreate .cpp
59
60 updateFishLocat ion .o: updateFishLocat ion .cpp
61 $(CC) $( CFLAGS_C ++) updateFishLocat ion .cpp $( EXE_INC ) $(  -

EXE_LIBS )
62
63 ELAM -de.o: ELAM -de.cpp
64 $(CC) $( CFLAGS_C ++) ELAM -de.cpp $( EXE_INC ) $( EXE_LIBS )
65
66 clean :
67 rm -rf *.o *. so ELAM -beta
68
69 # Fortran compiler commands
70 # -o # output fi le name ( general )
71 # -c # object f i le name
72 # -pedantic # checks for e.g. gnu commands
73 # - ffree - form # enable free form
74 # -Wall # show all Warnings which are easy to avoid
75 # - fsyntax -only # check , do not compile
76 # -ggdb / -g # produce symbolic debug information
77 # -w # Disables all warning messages
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Extreme point detection

The MATLAB script extremePoints.m automatically detects extreme points
of a data vector. It uses a di�erentiation based approach on both laboratory
data and simulation data, and an additional moving average function on the
latter.

1 funct ion [dcl ] = extremePoints (x , windowSize , plotOnOff )
2 % Compute extreme points of vector x using optional moving  -

average
3 % Custom fi l ter in the end
4 %
5 % dcl = direct ion change locat ions
6 % x = 1D coordinate vector
7 % windowSize = length of averaging window , should be odd
8 % number for symmetry , 0 for direct analysis
9 % without moving average

10 % plotOnOff = controls if results wil l be plotted
11 %
12 % ---- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
13
14 if ( strcmp (plotOnOff , ' plotOff ' ) )
15 plotVar = false ;
16 else
17 plotVar = true ;
18 end
19
20 if ( windowSize ~= 0) % use moving average
21 % Moving average to remove small turns
22 dirAvg = movmean (x , windowSize );
23 dirAvgDeltaX = diff ( dirAvg );
24 % Minimum diff to remove turns at plateaus - Fitted to  -

f lume dimensions
25 dirAvgDeltaX ( dirAvgDeltaX < 0.01) = 0;
26 % Sign change = dir ( ect ion ) change . -1= decrease ,0= const  -

,1= increase
27 dirAvgDeltaXsign = sign ( dirAvgDeltaX );
28 % + -2= dir change , + -1= change to / from hold , 0= no change

BAW Dissertationen Nr. 1 2018 131



APPENDIX C

29 dirAvgChange = [0; diff ( d irAvgDeltaXsign ) ];
30 % direct ion change indices
31 dci = [ 1 ];
32 dirAvgLength = length ( dirAvgChange );
33 for i=3: dirAvgLength
34 if ( abs( dirAvgChange ( i ) ) >= 1) && ( i <= length (x) -2)  -

% dirAvgLength (end )
35 % Move index to local min /max according to x  -

within i+ -2
36 if ( dirAvgDeltaXsign ( i ) < 0)
37 [~ , indexExtremum ] = max(x(i -2: i+2) ) ;
38 elseif ( dirAvgDeltaXsign ( i ) > 0)
39 [~ , indexExtremum ] = min(x(i -2: i+2) ) ;
40 else
41 indexExtremum = 3;
42 end
43 indexExtremum = indexExtremum + i - 3;
44 dci = [dci ; indexExtremum ];
45 end
46 end
47 else % no averaging , windowSize == 0
48 deltaX = diff (x) ;
49 % Sign change = dir ( ect ion ) change . -1= decrease ,0= const  -

,1= increase
50 deltaXsign = sign ( deltaX );
51 % + -2= dir change , + -1= change to / from hold , 0= no change
52 changeX = [0; diff ( deltaXsign ) ];
53 % merge or delete plateaus of arbitrary length ( holding )
54 if ( deltaX (1) == 0) % catch plateaus at start
55 holdSign = true ;
56 storedIndex = 2;
57 else
58 holdSign = false ;
59 end
60 i = 0;
61 while ( i < length ( changeX ))
62 i = i+1;
63 if ( abs( changeX ( i ) ) == 1) % plateau
64 if ( holdSign ) % plateau end
65 if ( del taXsign ( i ) == deltaXsign ( storedIndex  -

-1) ) % plateau , no dir change
66 changeX ( i ) = 0;
67 changeX ( storedIndex ) = 0;
68 else % plateau , dir change , merge
69 changeX ( storedIndex ) = 0;
70 end
71 holdSign = false ;
72 else % plateau start
73 holdSign = true ;
74 storedIndex = i ;
75 end
76 end
77 end
78 dci = find (( abs( changeX ) >= 1) ) ;
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79 end
80
81 % Filter small dx
82 deltaX2 = x(dci (2: end)) - x(dci (1: end-1) ) ;
83 dci ( abs( deltaX2 ) < 0.27) = 0; % correct ly ignore dci (end ) -  -

always valid
84 dci = dci (dci ~= 0) ;
85
86 % Filter start area
87 dci = dci (x(dci ) <= 9.74) ;
88
89 dcl = x(dci ) ; % Direct ion change locat ions
90
91 % Plot
92 if ( plotVar )
93 figure () ;
94 hold on
95
96 line ([0 , length (x) ] ,[9.74 ,9.74] , ' LineStyle ' , ' : ' , 'Color '  -

,[0.5 0.5 0.5]) ;
97
98 if ( windowSize ~= 0) % Plot moving average
99 plot (x (1: dirAvgLength )) ;

100 plot ( dirAvg (1: dirAvgLength ) , ' . ' ) ;
101 plot (dci ,x(dci ) , 'o ' , 'Color ' , ' red ' ) ;
102 else % Plot x distr ibut ion and TP circles
103 plot (x) ;
104 plot (dci ,x(dci ) , 'o ' , 'Color ' , ' red ' ) ;
105 end
106
107 xlabel ( 'Data point [ -] ' ) ;
108 ylabel ( 'x [m] ' ) ;
109 end
110
111 end
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Additional model results
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D.1 Flume hydraulic results for z = 0:07 m

Short screen/just pillars, with slot

Figure D.1: Top views showing short screen velocity magnitude of (a) the lab-
oratory measurement (screen of bars and pillars), (b) the CFD simulation (just
pillars), and (c) the di�erence laboratory�simulation. See Figure 3.7 caption for
further details.
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Short screen/no screen, with slot

Figure D.2: Top views showing short and no screen velocity magnitude of (a) the
laboratory measurement (screen of bars and pillars), (b) the CFD simulation (nei-
ther bars nor pillars), and (c) the di�erence laboratory�simulation. Se e Figure 3.7
caption for further details.
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D.2 Flume hydraulic results for z = 0:40 m

Short screen/just pillars, with slot

Figure D.3: Top views showing short screen velocity magnitude of (a) the lab-
oratory measurement (screen of bars and pillars), (b) the CFD simulation (just
pillars), and (c) the di�erence laboratory�simulation. See Figure 3.8 caption for
further details.
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Short screen/no screen, with slot

Figure D.4: Top views showing short and no screen velocity magnitude of (a) the
laboratory measurement (screen of bars and pillars), (b) the CFD simulation (nei-
ther bars nor pillars), and (c) the di�erence laboratory�simulation. Se e Figure 3.8
caption for further details.

138 BAW Dissertationen Nr. 1 2018



ADDITIONAL MODEL RESULTS

D.3 Best parameter sets

Table D.1: Best parameter sets found in the calibration study. See Table 5.3 for
names and units.

No. Parameter ID e170 ID e184 ID e277

1 r sameSpot 4:8 3:3 5:8
2 Ug 3:8 3:5 3:4
3 t trap 47:1 58:6 39:9
4  Migr;a 34:3 38:9 47:5
5  Migr;r 17:6 49:9 49:3
6 � H 0:052 0:056 0:062
7 mM 0:965 0:987 0:959
8 mF;d 0:933 0:958 0:979
9 mF;i 0:03 0:36 0:27

10 ms 0:94 0:90 0:62
11 M ini 0:23 0:31 0:51
12 kM; 1 3:3 6:5 8:2
13 kM; 2 25:1 31:2 34:6
14 kF; 1 25:1 31:2 34:6
15 kF; 2 3:1 3:7 6:3
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ELAM-2014 behavior model
for upstream movement

The ELAM-2014 behavior model was found to be structurally unsuitable
for modeling upstream migration in small-scale because it lacks a swimcost
submodel and does not allow holding behavior (section 4.1.3). To corroborate
this theoretical argument, the behavior model was tested with minorchanges
using the EHF patterns and EHF CFD data.

E.1 Model adaptation

The ELAM-2014 behavior model was combined with the ELAM-de frame-
work and the CFD model of the long screen setup with slot. Preferreddirec-
tions were changed from downstream to upstream similar to the approach of
Smith et al. (2012). If it was structurally suitable for the new task, a quan-
titative agreement to the patterns P(1-4) found in chapter 2 was expected
to emerge even without calibrated parameters.

Three simulations, A; B; C; were tested. The changes listed below are in-
formed guesses to account for the reversed migration direction. Behaviors{1�
4} are de�ned in subsection 4.1.1. Symbol and model explanations can be
found in the appendix of Goodwin et al. (2014). Simulation A is modi�ed
from the original model as follows:

ˆ Behavior{1} main direction from downstream to upstream by subtract-
ing 180° from the �ow vector angle before setting the swim vector to
it.

ˆ Behavior{3} direction from upstream to downstream by directly set-
ting the absolute swim vector angle equal to the �ow vector angle.

ˆ Fish body length from BL = 0 :09 m to BL = 0 :27 m to �t the EHF
data set 1e.
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ˆ Minimum sensory point distance from dF SO;min = 4 :5 m to dF SO;min =
0:2 m to adapt to the smaller geometry and reduce the amount of
outside sensory points while allowing a small ovoid volume.

ˆ Fish's sustained swimming velocity from vf = 2 BL/s to vf = 3 BL/s
to allow movement against the �ow.

ˆ Site-speci�c event triggering thresholds for acceleration [m=s2] changed
from kB f 2g = 0 :8373; kB f 3g = 0 :89 to kB f 2g = 0 :3; kB f 3g = 3 .

For simulation B, additional change was made:

ˆ Site-speci�c event trigger thresholds for depth [m], representing pres-
sure in ELAM-2014, changed fromkB f 4g = 1 :1315 to kB f 4g = 0 :15 to
increase bottom preference.

For simulation C, additional change was made:

ˆ Behavior{3} direction back to original upstream to allow �sprinting�
into the slot.

ˆ Site-speci�c event trigger thresholds changed fromkB f 3g = 3 ; kB f 4g =
0:15 to kB f 3g = 3 ; kB f 4g = 0 :1 to further increase acceleration attrac-
tion and bottom preference.

E.2 Results and discussion

Results using N = 13 �sh are reported in Table E.1. Taking an arbitrary
limit of 10 percentage points deviation, only the turns middle metric is met.
Agreement is insu�cient for all three simulations, as the high OPD valu es
illustrate.

One probable reason for this result is the lack of a motivational factor
to drive the �sh upstream. In ELAM-2014, downstream �sh migration is
simulated. This objective can be achieved by passive drift most of the times.
Only in dangerous situations, such as getting near a turbine or spillway
intake, a �sh needs to get active and escape. The situation for upstream
migrating �sh is vice versa. They need to get active to increase their �tness,
which is a structural di�erence.

A similar approach of reversing ELAM-2014 behavior directions for up-
stream migration was used by Smith et al. (2012). However, upstream swim
speed was imposed and extensive calibration was needed to �t observeddata.

Hence, I do not expect much insight from a calibration of the 2014 be-
havior model for upstream movement. I conclude that a behavior model with
a di�erent structure is needed for upstream movement.
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Table E.1: Pattern descriptors in the ethohydraulic �ume (%, �rst line) and r el-
ative di�erences of selected ELAM-de simulations (percentage points) using three
behavior models adapted from ELAM-2014 for setup1e-A (slot, long screen). For
horizontal columns, L, M, R is left, middle, right; for vertical column s, S, M, B is
surface, middle, bottom; for turns columns, U, M, D is upstream, middle, down-
stream third of the �ume. OPD is the mean percentage point di�erence of four
patterns.

ID Horizontal Vertical Turns No-turns OPD

L M R S M B U M D

Data set 1e-A 35 8 57 1 1 99 26 28 47 60 �

Simulation A -10 53 -43 35 34 -69 -24 -9 33 -29 34.0
Simulation B -10 27 -17 35 55 -90 -20 4 16 -22 29.5
Simulation C -21 40 -19 37 49 -85 -17 -3 20 25 31.4
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Software applied

Besides custom programs, many commercial or free software was applied
for various tasks in this work. Table F.1 lists them along with their respec-
tive purpose. In case of special or extensive use for a task, the software is
referenced in the relevant place as well.

Table F.1: Relevant commercial and free software applied in this work in alpha-
betical order. All trademarks are property of their respective owners.

Software Version Purpose

Citavi 5.5 Reference management
Code::Blocks 16.01 Code editing
GNU Debugger 7.2 Code debugging
Intel Compiler 15.0.6 Code compilation
MATLAB R2016a Lab/IBM data processing and plotting
Microsoft Excel 2010 Lab data processing
Microsoft PowerPoint 2010 Chart creation
Microsoft Windows 7 Operating system
MobaXterm 8.6 Terminal to High Performance Computer
Notepad++ 7.3.3 Code editing
OpenFOAM 2.3.1 CFD simulations and particle tracking
ParaView 5.2.1 Visualization of CFD results
PDF-XChange Editor 6.0 PDF creation and editing
Rhinoceros 5 CAD geometry creation for CFD
Tecplot 360 2014 R2 Visualization of IBM results
TeXstudio 2.12.4 Text processing and typesetting

IBM, Individual-based model; CFD, Computational �uid dynamics;
PDF, Portable document format; CAD, Computer-aided design.

BAW Dissertationen Nr. 1 2018 143





���������������������������������

���������������������•�����������
•���•��•�•• �	���€�� �€�
•���•�‚•�•• �	���€�� �€�•ƒ•

„�������
�����������ƒ���€€ƒƒ �…��†���
•���•��•�•• �	��•�•� •
•���•�‚•�•• �	��•�•� •‡�‡

ˆˆˆ‰†�ˆ‰��


	BAWDissertationen Nr.1
	Impressum
	Title
	Abstract
	Contents
	Introduction
	Fish migration in German rivers
	Individual-based modeling and the ELAM
	Objectives
	Outline

	Fish behavior observation
	Literature review
	Fish behavior in flumes
	Fish behavior in dam tailraces
	Discussion
	Conclusions

	Ethohydraulic flume (EHF) study
	Hydraulic methods
	Biologic methods
	General results
	Pattern analysis
	Wall proximity
	Bottom proximity
	Turns
	Group interaction
	Time and success

	Discussion
	Conclusions


	Hydraulic model of a flume
	Computational fluid dynamics (CFD)
	Structured and unstructured meshes
	Flume CFD model and velocity measurements
	Results and discussion
	Jet alignment
	Two-dimensionality
	Effects of horizontal bars and vertical pillars
	Considerations on physical resistance

	Conclusions

	Software frameworks and fish behavior models
	Literature review
	Mid-scale models
	Small-scale models
	Discussion
	Conclusions

	New framework
	Program organization
	Faulty checks for mesh insideness
	Calculating acceleration magnitude

	New framework validation
	Test case CFD model
	Test case behavior model
	Data conversion
	Results and discussion


	New behavior model for trout in a flume
	Test methods
	Procedure
	Metric for model quality
	Latin hypercube sampling
	Turn detection for simulation data
	Software verification

	Model description
	Purpose
	Entities, state variables, and scales
	Process overview
	Design concepts
	Basic principles
	Emergence
	Adaptation
	Sensing
	Stochasticity
	Observation

	Initialization
	Input data
	Submodels
	Sensory ovoid
	chooseBehavior
	Motivation
	Fatigue
	Migrating
	Holding
	Drifting
	Vertical swimming
	updateFishLocation
	resetPosition


	Test results
	Model structure
	Sensitivity
	Calibration
	Validation

	Discussion
	Model quality
	Model structure
	Framework


	Conclusions and future work
	Conclusions
	Future work
	Framework development
	Flume scenarios
	Fishway attraction


	References
	Online resources
	Acronyms
	List of Figures
	List of Tables

