Ferrando, Guillermo; Santa Fe, Carlos Cian

Pier Scour Prediction for Mississippi River Bridge Pier 11 for the 08-03-93 flood event

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/100409

Vorgeschlagene Zitierweise/Suggested citation:

Standardnutzungsbedingungen/Terms of Use:
Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die Weiterverarbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of the restrictive license will be binding.
PREDICTION PAPERS
PIER SCOUR PREDICTION FOR MISSISSIPPI RIVER BRIDGE
PIER 11 for the 08-03-93 flood event
Bridge Case 7

Authors: Civil Engineer Guillermo Ferrando and Hydroresources Engineer Carlos Cian
Santa Fe – ARGENTINA.

A - Prediction Methodology used.
To determine pier scour we used the CSU (Colorado State University) equation. The equation is:

(1) \[Y_s = Y_1 \cdot 2.0 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot (a/Y_1)^{0.65} \cdot \text{Fr}_1^{0.43} \]

Where:

- \(Y_s \) = Scour depth; m
- \(Y_1 \) = Flow depth directly upstream of the pier; m
- \(K_1 \) = Correction factor for pier nose shape.
- \(K_2 \) = Correction factor for angle of attack of flow.
- \(K_3 \) = Correction factor for bed condition.
- \(K_4 \) = Correction factor for armoring by bed material size.
- \(L \) = Length of pier; m.
- \(a \) = Pier width; m.
- \(\text{Fr}_1 \) = Froude Number directly upstream of the pier; \(V_1/(g \cdot Y_1)^{1/2} \).
- \(V_1 \) = Mean velocity of flow directly upstream of the pier; m/s.
- \(g \) = Acceleration of gravity; 9.81 m/s².

There are many situations about this case.

At the first time, we have the basic formula (1) with the data of the footing, to know:
- WS elevation: 118.38 m
- Bed elevation: 95.86 m
- Skew angle (\(\theta \)): 11°
- Pier scour in condition "Live - bed"
- Bed form: Dune
- \(Y_1 \) = 22.52 m

We calculated the values of "a" and "L", using the following averages pondered for the depth:

(2) \[a_{\text{average}} = \frac{3.20 \text{m} \times 7.32 \text{m} + 10.67 \text{m} \times 5.49 \text{m} + 8.65 \text{m} \times (2.74 \text{m} + 2.42 \text{m})/2}{3.20 \text{m} + 10.67 \text{m} + 8.65 \text{m}} = 4.63 \text{m} \]

(3) \[L_{\text{average}} = \frac{3.20 \text{m} \times 16.00 \text{m} + 10.67 \text{m} \times 14.78 \text{m} + 11.57 \text{m} \times 6.86 \text{m} + 7.63 \text{m} \times 1.79 \text{m}}{22.52 \text{m}} = 13.41 \text{m} \]

\(V_1 = 2.429 \text{ m/s} \)

Froude number:
\(\text{Fr}_1 = \frac{2.429}{(9.81 \times 22.52)^{1/2}} = 0.163 \)

\(K_1 \) - The correction factor \(K_1 \) for pier nose shape should be determined for angles of attack up to 5 degrees. For greater angles, \(K_2 \) dominates and \(K_1 \) is considered as 1. Then \(K_1 = 1 \).

\(K_2 \) can be calculated using the following equation:

\[K_2 = (\cos\theta + L/a \cdot \sin\theta)^{0.65} \]

\[K_2 = (\cos 11° + 13.41/4.63 \times \sin 11°)^{0.65} = 1.32 \]
K₃ = 1.1, because the data is dune.

K₄.- The correction factor result from recent research for FHWA by Molinas at CSU. This factor decreases scour depths for armoring of the scour hole for bed material that have a D₅₀ equal to or larger than 0.06m (D₅₀ ≥ 0.06m).- For this case D₅₀ = 0.0006m, then K₄ = 1.0

Other data used are:
WS elevation: 118.38 m
Bed elevation: 95.86 m
Skew angle (θ): 11°
Pier scour in condition “Live - bed”
Bed form: Dune

Equation 21:
\[Y_{s1} = 22.52 \times 2.0 \times 1.0 \times 1.32 \times 1.1 \times 1.0 \times \left(\frac{4.63}{22.52} \right)^{0.05} \times \left(\frac{0.163}{0.43} \right) \]

Then: \[Y_{s1} = 10.72 \text{ m} \]

We calculated the one second value of scour depth based in recommendations of the publication Nº FHWA-IP-90-017 – November 1995, Hydraulic Engineering Circular Nº 18, pages 39 and 40, we used for prediction pier scour the followings sketch:

The formula is:
(4) \[V_f = V_1 \times \frac{\ln (10.93 \times Y_f / D_{84} + 1)}{\ln (10.93 \times Y_1 / D_{84} + 1)} \]
Where:
\[V_1 = 2.249 \text{ m/s} \]
\[Y_1 = 22.52 \text{ m} \]
\[D_{84} = 0.0013 \text{ m} \]
\[Y_f = 3.20 \text{ m} \]

Then \[V_f = 2.04 \text{ m/s} \]

The Froude number is:
\[Fr_f = \frac{2.04}{(9.81 \times 3.20)^{1/2}} = 0.364 \]

And \[K_2 = (\cos 11^\circ + 13.41 \text{ m/4.63 m} \times \sin 11^\circ)^{0.66} = 1.321 \]

K₃ = 1.1, adopted of table for small dunes.
K₄ = 1.0

Applied the CSU equation with this data we obtain:
$$Y_{s1} = 3.20m \times 2.0 \times 1 \times 1.321 \times 1.1 \times 1 \times (4.63m/3.20m)^{0.65} \times (0.364)^{0.43}$$

Then: $$Y_{s2} = 7.66 \text{m}$$

Note: during the data investigation, we knowed (internet) that in 1993 the measured scour at the pile 11 in this bridge was 7.10m (23.3 ft) – BSDMS Summary Report – Site 57 Mississippi River at S.R.51/150 at Chester, which very similar to Y_{s2} calculated in this paper.

The HEC-18 has recommended to adopt the bigger within both results (page 39).

According with HEC-18, for PREDICTION EVENT we adopt the value $$Y_{s1} = 10.72 \text{m}.$$

B - Additional data.
We had considered that the data was enough for this case.

C – Best estimate of the cost for obtaining the additional data.
Is not necessary additional cost.

IC Guillermo Ferrando
IRH Carlos Cian